Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( W e. Word V -> W e. Word V ) |
2 |
1
|
ancli |
|- ( W e. Word V -> ( W e. Word V /\ W e. Word V ) ) |
3 |
2
|
anim1i |
|- ( ( W e. Word V /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( W e. Word V /\ W e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) ) |
4 |
3
|
3impb |
|- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W e. Word V /\ W e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) ) |
5 |
|
cshweqdif2 |
|- ( ( ( W e. Word V /\ W e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( W cyclShift N ) = ( W cyclShift M ) -> ( W cyclShift ( M - N ) ) = W ) ) |
6 |
4 5
|
syl |
|- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift N ) = ( W cyclShift M ) -> ( W cyclShift ( M - N ) ) = W ) ) |