Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = 0 -> ( x x. L ) = ( 0 x. L ) ) |
2 |
1
|
oveq2d |
|- ( x = 0 -> ( I + ( x x. L ) ) = ( I + ( 0 x. L ) ) ) |
3 |
2
|
fvoveq1d |
|- ( x = 0 -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) |
4 |
3
|
eqeq2d |
|- ( x = 0 -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) ) |
5 |
4
|
imbi2d |
|- ( x = 0 -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) ) ) |
6 |
|
oveq1 |
|- ( x = y -> ( x x. L ) = ( y x. L ) ) |
7 |
6
|
oveq2d |
|- ( x = y -> ( I + ( x x. L ) ) = ( I + ( y x. L ) ) ) |
8 |
7
|
fvoveq1d |
|- ( x = y -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
9 |
8
|
eqeq2d |
|- ( x = y -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) ) |
10 |
9
|
imbi2d |
|- ( x = y -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) ) ) |
11 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x x. L ) = ( ( y + 1 ) x. L ) ) |
12 |
11
|
oveq2d |
|- ( x = ( y + 1 ) -> ( I + ( x x. L ) ) = ( I + ( ( y + 1 ) x. L ) ) ) |
13 |
12
|
fvoveq1d |
|- ( x = ( y + 1 ) -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
14 |
13
|
eqeq2d |
|- ( x = ( y + 1 ) -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
15 |
14
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) |
16 |
|
oveq1 |
|- ( x = j -> ( x x. L ) = ( j x. L ) ) |
17 |
16
|
oveq2d |
|- ( x = j -> ( I + ( x x. L ) ) = ( I + ( j x. L ) ) ) |
18 |
17
|
fvoveq1d |
|- ( x = j -> ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) |
19 |
18
|
eqeq2d |
|- ( x = j -> ( ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
20 |
19
|
imbi2d |
|- ( x = j -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( x x. L ) ) mod ( # ` W ) ) ) ) <-> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) ) |
21 |
|
zcn |
|- ( L e. ZZ -> L e. CC ) |
22 |
21
|
mul02d |
|- ( L e. ZZ -> ( 0 x. L ) = 0 ) |
23 |
22
|
adantl |
|- ( ( W e. Word V /\ L e. ZZ ) -> ( 0 x. L ) = 0 ) |
24 |
23
|
adantr |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( 0 x. L ) = 0 ) |
25 |
24
|
oveq2d |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + ( 0 x. L ) ) = ( I + 0 ) ) |
26 |
|
elfzoelz |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) |
27 |
26
|
zcnd |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. CC ) |
28 |
27
|
addid1d |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I + 0 ) = I ) |
29 |
28
|
ad2antll |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + 0 ) = I ) |
30 |
25 29
|
eqtrd |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I + ( 0 x. L ) ) = I ) |
31 |
30
|
oveq1d |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) = ( I mod ( # ` W ) ) ) |
32 |
|
zmodidfzoimp |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I mod ( # ` W ) ) = I ) |
33 |
32
|
ad2antll |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( I mod ( # ` W ) ) = I ) |
34 |
31 33
|
eqtr2d |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> I = ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) |
35 |
34
|
fveq2d |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( 0 x. L ) ) mod ( # ` W ) ) ) ) |
36 |
|
fveq1 |
|- ( W = ( W cyclShift L ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
37 |
36
|
eqcoms |
|- ( ( W cyclShift L ) = W -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
38 |
37
|
ad2antrl |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
39 |
38
|
adantl |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) |
40 |
|
simprll |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> W e. Word V ) |
41 |
|
simprlr |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> L e. ZZ ) |
42 |
|
elfzo0 |
|- ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) |
43 |
|
nn0z |
|- ( I e. NN0 -> I e. ZZ ) |
44 |
43
|
adantr |
|- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> I e. ZZ ) |
45 |
|
nn0z |
|- ( y e. NN0 -> y e. ZZ ) |
46 |
|
zmulcl |
|- ( ( y e. ZZ /\ L e. ZZ ) -> ( y x. L ) e. ZZ ) |
47 |
45 46
|
sylan |
|- ( ( y e. NN0 /\ L e. ZZ ) -> ( y x. L ) e. ZZ ) |
48 |
47
|
ancoms |
|- ( ( L e. ZZ /\ y e. NN0 ) -> ( y x. L ) e. ZZ ) |
49 |
|
zaddcl |
|- ( ( I e. ZZ /\ ( y x. L ) e. ZZ ) -> ( I + ( y x. L ) ) e. ZZ ) |
50 |
44 48 49
|
syl2an |
|- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( I + ( y x. L ) ) e. ZZ ) |
51 |
|
simplr |
|- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( # ` W ) e. NN ) |
52 |
50 51
|
jca |
|- ( ( ( I e. NN0 /\ ( # ` W ) e. NN ) /\ ( L e. ZZ /\ y e. NN0 ) ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) |
53 |
52
|
ex |
|- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
54 |
53
|
3adant3 |
|- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
55 |
42 54
|
sylbi |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
56 |
55
|
adantl |
|- ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
57 |
56
|
expd |
|- ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( L e. ZZ -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) |
58 |
57
|
com12 |
|- ( L e. ZZ -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) |
59 |
58
|
adantl |
|- ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) ) |
60 |
59
|
imp |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( y e. NN0 -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
61 |
60
|
impcom |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) ) |
62 |
|
zmodfzo |
|- ( ( ( I + ( y x. L ) ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
63 |
61 62
|
syl |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
64 |
|
cshwidxmod |
|- ( ( W e. Word V /\ L e. ZZ /\ ( ( I + ( y x. L ) ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) ) |
65 |
40 41 63 64
|
syl3anc |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W cyclShift L ) ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) ) |
66 |
|
nn0re |
|- ( I e. NN0 -> I e. RR ) |
67 |
|
zre |
|- ( L e. ZZ -> L e. RR ) |
68 |
|
nn0re |
|- ( y e. NN0 -> y e. RR ) |
69 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
70 |
|
remulcl |
|- ( ( y e. RR /\ L e. RR ) -> ( y x. L ) e. RR ) |
71 |
70
|
ancoms |
|- ( ( L e. RR /\ y e. RR ) -> ( y x. L ) e. RR ) |
72 |
|
readdcl |
|- ( ( I e. RR /\ ( y x. L ) e. RR ) -> ( I + ( y x. L ) ) e. RR ) |
73 |
71 72
|
sylan2 |
|- ( ( I e. RR /\ ( L e. RR /\ y e. RR ) ) -> ( I + ( y x. L ) ) e. RR ) |
74 |
73
|
ancoms |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( I + ( y x. L ) ) e. RR ) |
75 |
74
|
adantl |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( I + ( y x. L ) ) e. RR ) |
76 |
|
simprll |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> L e. RR ) |
77 |
|
simpl |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( # ` W ) e. RR+ ) |
78 |
|
modaddmod |
|- ( ( ( I + ( y x. L ) ) e. RR /\ L e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) ) |
79 |
75 76 77 78
|
syl3anc |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) ) |
80 |
|
recn |
|- ( I e. RR -> I e. CC ) |
81 |
80
|
adantl |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> I e. CC ) |
82 |
70
|
recnd |
|- ( ( y e. RR /\ L e. RR ) -> ( y x. L ) e. CC ) |
83 |
82
|
ancoms |
|- ( ( L e. RR /\ y e. RR ) -> ( y x. L ) e. CC ) |
84 |
83
|
adantr |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( y x. L ) e. CC ) |
85 |
|
recn |
|- ( L e. RR -> L e. CC ) |
86 |
85
|
adantr |
|- ( ( L e. RR /\ y e. RR ) -> L e. CC ) |
87 |
86
|
adantr |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> L e. CC ) |
88 |
81 84 87
|
addassd |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y x. L ) + L ) ) ) |
89 |
|
recn |
|- ( y e. RR -> y e. CC ) |
90 |
89
|
adantl |
|- ( ( L e. RR /\ y e. RR ) -> y e. CC ) |
91 |
|
1cnd |
|- ( ( L e. RR /\ y e. RR ) -> 1 e. CC ) |
92 |
90 91 86
|
adddird |
|- ( ( L e. RR /\ y e. RR ) -> ( ( y + 1 ) x. L ) = ( ( y x. L ) + ( 1 x. L ) ) ) |
93 |
85
|
mulid2d |
|- ( L e. RR -> ( 1 x. L ) = L ) |
94 |
93
|
adantr |
|- ( ( L e. RR /\ y e. RR ) -> ( 1 x. L ) = L ) |
95 |
94
|
oveq2d |
|- ( ( L e. RR /\ y e. RR ) -> ( ( y x. L ) + ( 1 x. L ) ) = ( ( y x. L ) + L ) ) |
96 |
92 95
|
eqtr2d |
|- ( ( L e. RR /\ y e. RR ) -> ( ( y x. L ) + L ) = ( ( y + 1 ) x. L ) ) |
97 |
96
|
adantr |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( y x. L ) + L ) = ( ( y + 1 ) x. L ) ) |
98 |
97
|
oveq2d |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( I + ( ( y x. L ) + L ) ) = ( I + ( ( y + 1 ) x. L ) ) ) |
99 |
88 98
|
eqtrd |
|- ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y + 1 ) x. L ) ) ) |
100 |
99
|
adantl |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( I + ( y x. L ) ) + L ) = ( I + ( ( y + 1 ) x. L ) ) ) |
101 |
100
|
oveq1d |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( I + ( y x. L ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) |
102 |
79 101
|
eqtrd |
|- ( ( ( # ` W ) e. RR+ /\ ( ( L e. RR /\ y e. RR ) /\ I e. RR ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) |
103 |
102
|
ex |
|- ( ( # ` W ) e. RR+ -> ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
104 |
69 103
|
syl |
|- ( ( # ` W ) e. NN -> ( ( ( L e. RR /\ y e. RR ) /\ I e. RR ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
105 |
104
|
expd |
|- ( ( # ` W ) e. NN -> ( ( L e. RR /\ y e. RR ) -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
106 |
105
|
com12 |
|- ( ( L e. RR /\ y e. RR ) -> ( ( # ` W ) e. NN -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
107 |
67 68 106
|
syl2an |
|- ( ( L e. ZZ /\ y e. NN0 ) -> ( ( # ` W ) e. NN -> ( I e. RR -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
108 |
107
|
com13 |
|- ( I e. RR -> ( ( # ` W ) e. NN -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
109 |
66 108
|
syl |
|- ( I e. NN0 -> ( ( # ` W ) e. NN -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
110 |
109
|
imp |
|- ( ( I e. NN0 /\ ( # ` W ) e. NN ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
111 |
110
|
3adant3 |
|- ( ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
112 |
42 111
|
sylbi |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. ZZ /\ y e. NN0 ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
113 |
112
|
expd |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( L e. ZZ -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
114 |
113
|
adantld |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( ( W e. Word V /\ L e. ZZ ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
115 |
114
|
adantl |
|- ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W e. Word V /\ L e. ZZ ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
116 |
115
|
impcom |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( y e. NN0 -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
117 |
116
|
impcom |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) = ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) |
118 |
117
|
fveq2d |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( ( ( I + ( y x. L ) ) mod ( # ` W ) ) + L ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
119 |
39 65 118
|
3eqtrd |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) |
120 |
119
|
eqeq2d |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) <-> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
121 |
120
|
biimpd |
|- ( ( y e. NN0 /\ ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) |
122 |
121
|
ex |
|- ( y e. NN0 -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) |
123 |
122
|
a2d |
|- ( y e. NN0 -> ( ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( y x. L ) ) mod ( # ` W ) ) ) ) -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( ( y + 1 ) x. L ) ) mod ( # ` W ) ) ) ) ) ) |
124 |
5 10 15 20 35 123
|
nn0ind |
|- ( j e. NN0 -> ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
125 |
124
|
com12 |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> ( j e. NN0 -> ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |
126 |
125
|
ralrimiv |
|- ( ( ( W e. Word V /\ L e. ZZ ) /\ ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) |
127 |
126
|
ex |
|- ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ I e. ( 0 ..^ ( # ` W ) ) ) -> A. j e. NN0 ( W ` I ) = ( W ` ( ( I + ( j x. L ) ) mod ( # ` W ) ) ) ) ) |