| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwcl |
|- ( W e. Word A -> ( W cyclShift N ) e. Word A ) |
| 2 |
|
wrdf |
|- ( ( W cyclShift N ) e. Word A -> ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A ) |
| 3 |
1 2
|
syl |
|- ( W e. Word A -> ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A ) |
| 4 |
3
|
adantr |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A ) |
| 5 |
|
cshwlen |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) |
| 6 |
5
|
oveq2d |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( 0 ..^ ( # ` ( W cyclShift N ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 7 |
6
|
feq2d |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A <-> ( W cyclShift N ) : ( 0 ..^ ( # ` W ) ) --> A ) ) |
| 8 |
4 7
|
mpbid |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) : ( 0 ..^ ( # ` W ) ) --> A ) |