Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) |
2 |
|
elfzelz |
|- ( N e. ( 1 ... ( # ` W ) ) -> N e. ZZ ) |
3 |
2
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> N e. ZZ ) |
4 |
|
ubmelfzo |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) - N ) e. ( 0 ..^ ( # ` W ) ) ) |
5 |
4
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) - N ) e. ( 0 ..^ ( # ` W ) ) ) |
6 |
|
cshwidxmod |
|- ( ( W e. Word V /\ N e. ZZ /\ ( ( # ` W ) - N ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) ) ) |
7 |
1 3 5 6
|
syl3anc |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) ) ) |
8 |
|
elfz1b |
|- ( N e. ( 1 ... ( # ` W ) ) <-> ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) ) |
9 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
10 |
|
nncn |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. CC ) |
11 |
9 10
|
anim12ci |
|- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( ( # ` W ) e. CC /\ N e. CC ) ) |
12 |
11
|
3adant3 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) e. CC /\ N e. CC ) ) |
13 |
8 12
|
sylbi |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) e. CC /\ N e. CC ) ) |
14 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ N e. CC ) -> ( ( ( # ` W ) - N ) + N ) = ( # ` W ) ) |
15 |
13 14
|
syl |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) - N ) + N ) = ( # ` W ) ) |
16 |
15
|
oveq1d |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) = ( ( # ` W ) mod ( # ` W ) ) ) |
17 |
16
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) = ( ( # ` W ) mod ( # ` W ) ) ) |
18 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
19 |
|
modid0 |
|- ( ( # ` W ) e. RR+ -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
20 |
18 19
|
syl |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
21 |
20
|
3ad2ant2 |
|- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
22 |
8 21
|
sylbi |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
23 |
22
|
adantl |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
24 |
17 23
|
eqtrd |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) = 0 ) |
25 |
24
|
fveq2d |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( W ` ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) ) = ( W ` 0 ) ) |
26 |
7 25
|
eqtrd |
|- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` 0 ) ) |