| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) | 
						
							| 2 |  | elfzelz |  |-  ( N e. ( 1 ... ( # ` W ) ) -> N e. ZZ ) | 
						
							| 3 | 2 | adantl |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> N e. ZZ ) | 
						
							| 4 |  | elfz1b |  |-  ( N e. ( 1 ... ( # ` W ) ) <-> ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( # ` W ) e. NN ) | 
						
							| 6 | 4 5 | sylbi |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( # ` W ) e. NN ) | 
						
							| 7 | 6 | adantl |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( # ` W ) e. NN ) | 
						
							| 8 |  | fzo0end |  |-  ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 10 |  | cshwidxmod |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) ) | 
						
							| 11 | 1 3 9 10 | syl3anc |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) ) | 
						
							| 12 |  | nncn |  |-  ( ( # ` W ) e. NN -> ( # ` W ) e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( # ` W ) e. CC ) | 
						
							| 14 |  | 1cnd |  |-  ( ( N e. NN /\ ( # ` W ) e. NN ) -> 1 e. CC ) | 
						
							| 15 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( N e. NN /\ ( # ` W ) e. NN ) -> N e. CC ) | 
						
							| 17 | 13 14 16 | 3jca |  |-  ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) | 
						
							| 19 | 4 18 | sylbi |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) | 
						
							| 20 |  | subadd23 |  |-  ( ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) -> ( ( ( # ` W ) - 1 ) + N ) = ( ( # ` W ) + ( N - 1 ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) - 1 ) + N ) = ( ( # ` W ) + ( N - 1 ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) = ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) ) | 
						
							| 23 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N - 1 ) e. NN0 ) | 
						
							| 25 |  | simp3 |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> N <_ ( # ` W ) ) | 
						
							| 26 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 27 |  | nnz |  |-  ( ( # ` W ) e. NN -> ( # ` W ) e. ZZ ) | 
						
							| 28 | 26 27 | anim12i |  |-  ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( N e. ZZ /\ ( # ` W ) e. ZZ ) ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N e. ZZ /\ ( # ` W ) e. ZZ ) ) | 
						
							| 30 |  | zlem1lt |  |-  ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N <_ ( # ` W ) <-> ( N - 1 ) < ( # ` W ) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N <_ ( # ` W ) <-> ( N - 1 ) < ( # ` W ) ) ) | 
						
							| 32 | 25 31 | mpbid |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N - 1 ) < ( # ` W ) ) | 
						
							| 33 | 24 5 32 | 3jca |  |-  ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) ) | 
						
							| 34 | 4 33 | sylbi |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) ) | 
						
							| 35 |  | addmodid |  |-  ( ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) -> ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) = ( N - 1 ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) = ( N - 1 ) ) | 
						
							| 37 | 22 36 | eqtrd |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) = ( N - 1 ) ) | 
						
							| 38 | 37 | fveq2d |  |-  ( N e. ( 1 ... ( # ` W ) ) -> ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 40 | 11 39 | eqtrd |  |-  ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) |