Step |
Hyp |
Ref |
Expression |
1 |
|
0csh0 |
|- ( (/) cyclShift N ) = (/) |
2 |
|
oveq1 |
|- ( W = (/) -> ( W cyclShift N ) = ( (/) cyclShift N ) ) |
3 |
|
id |
|- ( W = (/) -> W = (/) ) |
4 |
1 2 3
|
3eqtr4a |
|- ( W = (/) -> ( W cyclShift N ) = W ) |
5 |
4
|
fveq2d |
|- ( W = (/) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) |
6 |
5
|
a1d |
|- ( W = (/) -> ( ( W e. Word V /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) ) |
7 |
|
cshword |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) |
8 |
7
|
fveq2d |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
9 |
8
|
adantr |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ W =/= (/) ) -> ( # ` ( W cyclShift N ) ) = ( # ` ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
10 |
|
swrdcl |
|- ( W e. Word V -> ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) e. Word V ) |
11 |
|
pfxcl |
|- ( W e. Word V -> ( W prefix ( N mod ( # ` W ) ) ) e. Word V ) |
12 |
|
ccatlen |
|- ( ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) e. Word V /\ ( W prefix ( N mod ( # ` W ) ) ) e. Word V ) -> ( # ` ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) = ( ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) + ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
13 |
10 11 12
|
syl2anc |
|- ( W e. Word V -> ( # ` ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) = ( ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) + ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ W =/= (/) ) -> ( # ` ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) = ( ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) + ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |
15 |
|
lennncl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
16 |
|
pm3.21 |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( W e. Word V -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) ) |
17 |
16
|
ex |
|- ( ( # ` W ) e. NN -> ( N e. ZZ -> ( W e. Word V -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) ) ) |
18 |
15 17
|
syl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( N e. ZZ -> ( W e. Word V -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) ) ) |
19 |
18
|
ex |
|- ( W e. Word V -> ( W =/= (/) -> ( N e. ZZ -> ( W e. Word V -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) ) ) ) |
20 |
19
|
com24 |
|- ( W e. Word V -> ( W e. Word V -> ( N e. ZZ -> ( W =/= (/) -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) ) ) ) |
21 |
20
|
pm2.43i |
|- ( W e. Word V -> ( N e. ZZ -> ( W =/= (/) -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) ) ) |
22 |
21
|
imp31 |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ W =/= (/) ) -> ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) ) |
23 |
|
simpl |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> W e. Word V ) |
24 |
|
zmodfzp1 |
|- ( ( N e. ZZ /\ ( # ` W ) e. NN ) -> ( N mod ( # ` W ) ) e. ( 0 ... ( # ` W ) ) ) |
25 |
24
|
ancoms |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( N mod ( # ` W ) ) e. ( 0 ... ( # ` W ) ) ) |
26 |
25
|
adantl |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) e. ( 0 ... ( # ` W ) ) ) |
27 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
28 |
|
nn0fz0 |
|- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
29 |
27 28
|
sylib |
|- ( W e. Word V -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
30 |
29
|
adantr |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
31 |
|
swrdlen |
|- ( ( W e. Word V /\ ( N mod ( # ` W ) ) e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) = ( ( # ` W ) - ( N mod ( # ` W ) ) ) ) |
32 |
23 26 30 31
|
syl3anc |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) = ( ( # ` W ) - ( N mod ( # ` W ) ) ) ) |
33 |
|
pfxlen |
|- ( ( W e. Word V /\ ( N mod ( # ` W ) ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) = ( N mod ( # ` W ) ) ) |
34 |
25 33
|
sylan2 |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) = ( N mod ( # ` W ) ) ) |
35 |
32 34
|
oveq12d |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) + ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) ) = ( ( ( # ` W ) - ( N mod ( # ` W ) ) ) + ( N mod ( # ` W ) ) ) ) |
36 |
27
|
nn0cnd |
|- ( W e. Word V -> ( # ` W ) e. CC ) |
37 |
|
zmodcl |
|- ( ( N e. ZZ /\ ( # ` W ) e. NN ) -> ( N mod ( # ` W ) ) e. NN0 ) |
38 |
37
|
nn0cnd |
|- ( ( N e. ZZ /\ ( # ` W ) e. NN ) -> ( N mod ( # ` W ) ) e. CC ) |
39 |
38
|
ancoms |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( N mod ( # ` W ) ) e. CC ) |
40 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ ( N mod ( # ` W ) ) e. CC ) -> ( ( ( # ` W ) - ( N mod ( # ` W ) ) ) + ( N mod ( # ` W ) ) ) = ( # ` W ) ) |
41 |
36 39 40
|
syl2an |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( ( ( # ` W ) - ( N mod ( # ` W ) ) ) + ( N mod ( # ` W ) ) ) = ( # ` W ) ) |
42 |
35 41
|
eqtrd |
|- ( ( W e. Word V /\ ( ( # ` W ) e. NN /\ N e. ZZ ) ) -> ( ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) + ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) ) = ( # ` W ) ) |
43 |
22 42
|
syl |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ W =/= (/) ) -> ( ( # ` ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) + ( # ` ( W prefix ( N mod ( # ` W ) ) ) ) ) = ( # ` W ) ) |
44 |
9 14 43
|
3eqtrd |
|- ( ( ( W e. Word V /\ N e. ZZ ) /\ W =/= (/) ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) |
45 |
44
|
expcom |
|- ( W =/= (/) -> ( ( W e. Word V /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) ) |
46 |
6 45
|
pm2.61ine |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) |