| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0csh0 |  |-  ( (/) cyclShift N ) = (/) | 
						
							| 2 |  | oveq1 |  |-  ( W = (/) -> ( W cyclShift N ) = ( (/) cyclShift N ) ) | 
						
							| 3 |  | oveq1 |  |-  ( W = (/) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( (/) cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 4 |  | 0csh0 |  |-  ( (/) cyclShift ( N mod ( # ` W ) ) ) = (/) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( W = (/) -> ( W cyclShift ( N mod ( # ` W ) ) ) = (/) ) | 
						
							| 6 | 1 2 5 | 3eqtr4a |  |-  ( W = (/) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 7 | 6 | a1d |  |-  ( W = (/) -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) ) | 
						
							| 8 |  | lennncl |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) | 
						
							| 9 | 8 | ex |  |-  ( W e. Word V -> ( W =/= (/) -> ( # ` W ) e. NN ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W =/= (/) -> ( # ` W ) e. NN ) ) | 
						
							| 11 | 10 | impcom |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( # ` W ) e. NN ) | 
						
							| 12 |  | simprr |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> N e. ZZ ) | 
						
							| 13 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 14 |  | nnrp |  |-  ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) | 
						
							| 15 |  | modabs2 |  |-  ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( ( N mod ( # ` W ) ) mod ( # ` W ) ) = ( N mod ( # ` W ) ) ) | 
						
							| 16 | 13 14 15 | syl2anr |  |-  ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( ( N mod ( # ` W ) ) mod ( # ` W ) ) = ( N mod ( # ` W ) ) ) | 
						
							| 17 | 16 | opeq1d |  |-  ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. = <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) = ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) | 
						
							| 19 | 16 | oveq2d |  |-  ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) = ( W prefix ( N mod ( # ` W ) ) ) ) | 
						
							| 20 | 18 19 | oveq12d |  |-  ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) | 
						
							| 21 | 11 12 20 | syl2anc |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) | 
						
							| 22 |  | simprl |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> W e. Word V ) | 
						
							| 23 | 12 11 | zmodcld |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) e. NN0 ) | 
						
							| 24 | 23 | nn0zd |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) e. ZZ ) | 
						
							| 25 |  | cshword |  |-  ( ( W e. Word V /\ ( N mod ( # ` W ) ) e. ZZ ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 26 | 22 24 25 | syl2anc |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 27 |  | cshword |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) | 
						
							| 29 | 21 26 28 | 3eqtr4rd |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) | 
						
							| 30 | 29 | ex |  |-  ( W =/= (/) -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) ) | 
						
							| 31 | 7 30 | pm2.61ine |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |