| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0csh0 |
|- ( (/) cyclShift N ) = (/) |
| 2 |
|
oveq1 |
|- ( W = (/) -> ( W cyclShift N ) = ( (/) cyclShift N ) ) |
| 3 |
|
oveq1 |
|- ( W = (/) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( (/) cyclShift ( N mod ( # ` W ) ) ) ) |
| 4 |
|
0csh0 |
|- ( (/) cyclShift ( N mod ( # ` W ) ) ) = (/) |
| 5 |
3 4
|
eqtrdi |
|- ( W = (/) -> ( W cyclShift ( N mod ( # ` W ) ) ) = (/) ) |
| 6 |
1 2 5
|
3eqtr4a |
|- ( W = (/) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
| 7 |
6
|
a1d |
|- ( W = (/) -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) ) |
| 8 |
|
lennncl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
| 9 |
8
|
ex |
|- ( W e. Word V -> ( W =/= (/) -> ( # ` W ) e. NN ) ) |
| 10 |
9
|
adantr |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W =/= (/) -> ( # ` W ) e. NN ) ) |
| 11 |
10
|
impcom |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( # ` W ) e. NN ) |
| 12 |
|
simprr |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> N e. ZZ ) |
| 13 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 14 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
| 15 |
|
modabs2 |
|- ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( ( N mod ( # ` W ) ) mod ( # ` W ) ) = ( N mod ( # ` W ) ) ) |
| 16 |
13 14 15
|
syl2anr |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( ( N mod ( # ` W ) ) mod ( # ` W ) ) = ( N mod ( # ` W ) ) ) |
| 17 |
16
|
opeq1d |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. = <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) |
| 18 |
17
|
oveq2d |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) = ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) |
| 19 |
16
|
oveq2d |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) = ( W prefix ( N mod ( # ` W ) ) ) ) |
| 20 |
18 19
|
oveq12d |
|- ( ( ( # ` W ) e. NN /\ N e. ZZ ) -> ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) |
| 21 |
11 12 20
|
syl2anc |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) |
| 22 |
|
simprl |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> W e. Word V ) |
| 23 |
12 11
|
zmodcld |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) e. NN0 ) |
| 24 |
23
|
nn0zd |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) e. ZZ ) |
| 25 |
|
cshword |
|- ( ( W e. Word V /\ ( N mod ( # ` W ) ) e. ZZ ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) ) |
| 26 |
22 24 25
|
syl2anc |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( ( W substr <. ( ( N mod ( # ` W ) ) mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( ( N mod ( # ` W ) ) mod ( # ` W ) ) ) ) ) |
| 27 |
|
cshword |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) |
| 28 |
27
|
adantl |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) |
| 29 |
21 26 28
|
3eqtr4rd |
|- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
| 30 |
29
|
ex |
|- ( W =/= (/) -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) ) |
| 31 |
7 30
|
pm2.61ine |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |