Step |
Hyp |
Ref |
Expression |
1 |
|
0csh0 |
|- ( (/) cyclShift ( # ` W ) ) = (/) |
2 |
|
oveq1 |
|- ( (/) = W -> ( (/) cyclShift ( # ` W ) ) = ( W cyclShift ( # ` W ) ) ) |
3 |
|
id |
|- ( (/) = W -> (/) = W ) |
4 |
1 2 3
|
3eqtr3a |
|- ( (/) = W -> ( W cyclShift ( # ` W ) ) = W ) |
5 |
4
|
a1d |
|- ( (/) = W -> ( W e. Word V -> ( W cyclShift ( # ` W ) ) = W ) ) |
6 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
7 |
6
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
8 |
|
cshwmodn |
|- ( ( W e. Word V /\ ( # ` W ) e. ZZ ) -> ( W cyclShift ( # ` W ) ) = ( W cyclShift ( ( # ` W ) mod ( # ` W ) ) ) ) |
9 |
7 8
|
mpdan |
|- ( W e. Word V -> ( W cyclShift ( # ` W ) ) = ( W cyclShift ( ( # ` W ) mod ( # ` W ) ) ) ) |
10 |
9
|
adantl |
|- ( ( (/) =/= W /\ W e. Word V ) -> ( W cyclShift ( # ` W ) ) = ( W cyclShift ( ( # ` W ) mod ( # ` W ) ) ) ) |
11 |
|
necom |
|- ( (/) =/= W <-> W =/= (/) ) |
12 |
|
lennncl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
13 |
11 12
|
sylan2b |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( # ` W ) e. NN ) |
14 |
13
|
nnrpd |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( # ` W ) e. RR+ ) |
15 |
14
|
ancoms |
|- ( ( (/) =/= W /\ W e. Word V ) -> ( # ` W ) e. RR+ ) |
16 |
|
modid0 |
|- ( ( # ` W ) e. RR+ -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
17 |
15 16
|
syl |
|- ( ( (/) =/= W /\ W e. Word V ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
18 |
17
|
oveq2d |
|- ( ( (/) =/= W /\ W e. Word V ) -> ( W cyclShift ( ( # ` W ) mod ( # ` W ) ) ) = ( W cyclShift 0 ) ) |
19 |
|
cshw0 |
|- ( W e. Word V -> ( W cyclShift 0 ) = W ) |
20 |
19
|
adantl |
|- ( ( (/) =/= W /\ W e. Word V ) -> ( W cyclShift 0 ) = W ) |
21 |
10 18 20
|
3eqtrd |
|- ( ( (/) =/= W /\ W e. Word V ) -> ( W cyclShift ( # ` W ) ) = W ) |
22 |
21
|
ex |
|- ( (/) =/= W -> ( W e. Word V -> ( W cyclShift ( # ` W ) ) = W ) ) |
23 |
5 22
|
pm2.61ine |
|- ( W e. Word V -> ( W cyclShift ( # ` W ) ) = W ) |