| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwshash.0 |
|- ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) |
| 2 |
|
orc |
|- ( n = j -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) |
| 3 |
2
|
a1d |
|- ( n = j -> ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) ) |
| 4 |
|
simprl |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) |
| 5 |
|
simprrl |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> n e. ( 0 ..^ ( # ` W ) ) ) |
| 6 |
|
simprrr |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> j e. ( 0 ..^ ( # ` W ) ) ) |
| 7 |
|
necom |
|- ( n =/= j <-> j =/= n ) |
| 8 |
7
|
biimpi |
|- ( n =/= j -> j =/= n ) |
| 9 |
8
|
adantr |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> j =/= n ) |
| 10 |
1
|
cshwshashlem3 |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) /\ j =/= n ) -> ( W cyclShift n ) =/= ( W cyclShift j ) ) ) |
| 11 |
10
|
imp |
|- ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) /\ j =/= n ) ) -> ( W cyclShift n ) =/= ( W cyclShift j ) ) |
| 12 |
4 5 6 9 11
|
syl13anc |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W cyclShift n ) =/= ( W cyclShift j ) ) |
| 13 |
|
disjsn2 |
|- ( ( W cyclShift n ) =/= ( W cyclShift j ) -> ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) |
| 14 |
12 13
|
syl |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) |
| 15 |
14
|
olcd |
|- ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) |
| 16 |
15
|
ex |
|- ( n =/= j -> ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) ) |
| 17 |
3 16
|
pm2.61ine |
|- ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) |
| 18 |
17
|
ralrimivva |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> A. n e. ( 0 ..^ ( # ` W ) ) A. j e. ( 0 ..^ ( # ` W ) ) ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) |
| 19 |
|
oveq2 |
|- ( n = j -> ( W cyclShift n ) = ( W cyclShift j ) ) |
| 20 |
19
|
sneqd |
|- ( n = j -> { ( W cyclShift n ) } = { ( W cyclShift j ) } ) |
| 21 |
20
|
disjor |
|- ( Disj_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } <-> A. n e. ( 0 ..^ ( # ` W ) ) A. j e. ( 0 ..^ ( # ` W ) ) ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) |
| 22 |
18 21
|
sylibr |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> Disj_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) |