Step |
Hyp |
Ref |
Expression |
1 |
|
cshwrepswhash1.m |
|- M = { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } |
2 |
1
|
cshwsiun |
|- ( W e. Word V -> M = U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) |
3 |
|
ovex |
|- ( 0 ..^ ( # ` W ) ) e. _V |
4 |
|
snex |
|- { ( W cyclShift n ) } e. _V |
5 |
4
|
a1i |
|- ( W e. Word V -> { ( W cyclShift n ) } e. _V ) |
6 |
5
|
ralrimivw |
|- ( W e. Word V -> A. n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } e. _V ) |
7 |
|
iunexg |
|- ( ( ( 0 ..^ ( # ` W ) ) e. _V /\ A. n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } e. _V ) -> U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } e. _V ) |
8 |
3 6 7
|
sylancr |
|- ( W e. Word V -> U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } e. _V ) |
9 |
2 8
|
eqeltrd |
|- ( W e. Word V -> M e. _V ) |