| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqcom |
|- ( ( W cyclShift n ) = w <-> w = ( W cyclShift n ) ) |
| 2 |
1
|
rexbii |
|- ( E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w <-> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) |
| 3 |
2
|
abbii |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } |
| 4 |
|
ovex |
|- ( 0 ..^ ( # ` W ) ) e. _V |
| 5 |
4
|
abrexex |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } e. _V |
| 6 |
3 5
|
eqeltri |
|- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |
| 7 |
|
rabssab |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } C_ { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } |
| 8 |
6 7
|
ssexi |
|- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |