Step |
Hyp |
Ref |
Expression |
1 |
|
cshwrepswhash1.m |
|- M = { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } |
2 |
|
repswsymballbi |
|- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
3 |
2
|
adantr |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
4 |
|
prmnn |
|- ( ( # ` W ) e. Prime -> ( # ` W ) e. NN ) |
5 |
4
|
nnge1d |
|- ( ( # ` W ) e. Prime -> 1 <_ ( # ` W ) ) |
6 |
|
wrdsymb1 |
|- ( ( W e. Word V /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. V ) |
7 |
5 6
|
sylan2 |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W ` 0 ) e. V ) |
8 |
7
|
adantr |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( W ` 0 ) e. V ) |
9 |
4
|
ad2antlr |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
10 |
|
simpr |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) |
11 |
1
|
cshwrepswhash1 |
|- ( ( ( W ` 0 ) e. V /\ ( # ` W ) e. NN /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( # ` M ) = 1 ) |
12 |
8 9 10 11
|
syl3anc |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( # ` M ) = 1 ) |
13 |
12
|
ex |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( # ` M ) = 1 ) ) |
14 |
3 13
|
sylbird |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( # ` M ) = 1 ) ) |
15 |
|
olc |
|- ( ( # ` M ) = 1 -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) |
16 |
14 15
|
syl6com |
|- ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) ) |
17 |
|
rexnal |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
18 |
|
df-ne |
|- ( ( W ` i ) =/= ( W ` 0 ) <-> -. ( W ` i ) = ( W ` 0 ) ) |
19 |
18
|
bicomi |
|- ( -. ( W ` i ) = ( W ` 0 ) <-> ( W ` i ) =/= ( W ` 0 ) ) |
20 |
19
|
rexbii |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) |
21 |
17 20
|
bitr3i |
|- ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) |
22 |
1
|
cshwshashnsame |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( # ` M ) = ( # ` W ) ) ) |
23 |
|
orc |
|- ( ( # ` M ) = ( # ` W ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) |
24 |
22 23
|
syl6com |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) ) |
25 |
21 24
|
sylbi |
|- ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) ) |
26 |
16 25
|
pm2.61i |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) |