| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cshwshash.0 | 
							 |-  ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-ne | 
							 |-  ( ( W ` i ) =/= ( W ` 0 ) <-> -. ( W ` i ) = ( W ` 0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rexbii | 
							 |-  ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rexnal | 
							 |-  ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitri | 
							 |-  ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ph )  | 
						
						
							| 7 | 
							
								
							 | 
							fzo0ss1 | 
							 |-  ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fzossfz | 
							 |-  ( 0 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sstri | 
							 |-  ( 1 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							sseli | 
							 |-  ( L e. ( 1 ..^ ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> L e. ( 0 ... ( # ` W ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( W cyclShift L ) = W )  | 
						
						
							| 13 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> W e. Word V )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` W ) e. Prime )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` W ) e. Prime )  | 
						
						
							| 16 | 
							
								
							 | 
							elfzelz | 
							 |-  ( L e. ( 0 ... ( # ` W ) ) -> L e. ZZ )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. ZZ )  | 
						
						
							| 18 | 
							
								
							 | 
							cshwsidrepswmod0 | 
							 |-  ( ( W e. Word V /\ ( # ` W ) e. Prime /\ L e. ZZ ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) )  | 
						
						
							| 19 | 
							
								13 15 17 18
							 | 
							syl3anc | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ex | 
							 |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( L e. ( 0 ... ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3imp | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							olc | 
							 |-  ( L = ( # ` W ) -> ( L = 0 \/ L = ( # ` W ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							a1d | 
							 |-  ( L = ( # ` W ) -> ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fzofzim | 
							 |-  ( ( L =/= ( # ` W ) /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. ( 0 ..^ ( # ` W ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							zmodidfzoimp | 
							 |-  ( L e. ( 0 ..^ ( # ` W ) ) -> ( L mod ( # ` W ) ) = L )  | 
						
						
							| 26 | 
							
								
							 | 
							eqtr2 | 
							 |-  ( ( ( L mod ( # ` W ) ) = L /\ ( L mod ( # ` W ) ) = 0 ) -> L = 0 )  | 
						
						
							| 27 | 
							
								26
							 | 
							a1d | 
							 |-  ( ( ( L mod ( # ` W ) ) = L /\ ( L mod ( # ` W ) ) = 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ex | 
							 |-  ( ( L mod ( # ` W ) ) = L -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							syl | 
							 |-  ( L e. ( 0 ..^ ( # ` W ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							syl | 
							 |-  ( ( L =/= ( # ` W ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							expcom | 
							 |-  ( L e. ( 0 ... ( # ` W ) ) -> ( L =/= ( # ` W ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							com24 | 
							 |-  ( L e. ( 0 ... ( # ` W ) ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							impcom | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3 | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							impcom | 
							 |-  ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L =/= ( # ` W ) -> L = 0 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							impcom | 
							 |-  ( ( L =/= ( # ` W ) /\ ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) ) -> L = 0 )  | 
						
						
							| 37 | 
							
								36
							 | 
							orcd | 
							 |-  ( ( L =/= ( # ` W ) /\ ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) ) -> ( L = 0 \/ L = ( # ` W ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ex | 
							 |-  ( L =/= ( # ` W ) -> ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) )  | 
						
						
							| 39 | 
							
								23 38
							 | 
							pm2.61ine | 
							 |-  ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							orcd | 
							 |-  ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( ( L = 0 \/ L = ( # ` W ) ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							df-3or | 
							 |-  ( ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) <-> ( ( L = 0 \/ L = ( # ` W ) ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylibr | 
							 |-  ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ex | 
							 |-  ( ( L mod ( # ` W ) ) = 0 -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							3mix3 | 
							 |-  ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							a1d | 
							 |-  ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							jaoi | 
							 |-  ( ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) )  | 
						
						
							| 47 | 
							
								21 46
							 | 
							mpcom | 
							 |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 48 | 
							
								1 47
							 | 
							syl3an1 | 
							 |-  ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							3mix1 | 
							 |-  ( L = 0 -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							a1d | 
							 |-  ( L = 0 -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							3mix2 | 
							 |-  ( L = ( # ` W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							a1d | 
							 |-  ( L = ( # ` W ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							repswsymballbi | 
							 |-  ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							 |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 55 | 
							
								1 54
							 | 
							syl | 
							 |-  ( ph -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							biimpa | 
							 |-  ( ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							3mix3d | 
							 |-  ( ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							expcom | 
							 |-  ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) )  | 
						
						
							| 60 | 
							
								50 52 59
							 | 
							3jaoi | 
							 |-  ( ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) )  | 
						
						
							| 61 | 
							
								48 60
							 | 
							mpcom | 
							 |-  ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 62 | 
							
								6 11 12 61
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							elfzo1 | 
							 |-  ( L e. ( 1 ..^ ( # ` W ) ) <-> ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							nnne0 | 
							 |-  ( L e. NN -> L =/= 0 )  | 
						
						
							| 65 | 
							
								
							 | 
							df-ne | 
							 |-  ( L =/= 0 <-> -. L = 0 )  | 
						
						
							| 66 | 
							
								
							 | 
							pm2.21 | 
							 |-  ( -. L = 0 -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							sylbi | 
							 |-  ( L =/= 0 -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 68 | 
							
								64 67
							 | 
							syl | 
							 |-  ( L e. NN -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							3ad2ant1 | 
							 |-  ( ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 70 | 
							
								63 69
							 | 
							sylbi | 
							 |-  ( L e. ( 1 ..^ ( # ` W ) ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							com12 | 
							 |-  ( L = 0 -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							nnre | 
							 |-  ( L e. NN -> L e. RR )  | 
						
						
							| 74 | 
							
								
							 | 
							ltne | 
							 |-  ( ( L e. RR /\ L < ( # ` W ) ) -> ( # ` W ) =/= L )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							sylan | 
							 |-  ( ( L e. NN /\ L < ( # ` W ) ) -> ( # ` W ) =/= L )  | 
						
						
							| 76 | 
							
								
							 | 
							df-ne | 
							 |-  ( ( # ` W ) =/= L <-> -. ( # ` W ) = L )  | 
						
						
							| 77 | 
							
								
							 | 
							eqcom | 
							 |-  ( L = ( # ` W ) <-> ( # ` W ) = L )  | 
						
						
							| 78 | 
							
								
							 | 
							pm2.21 | 
							 |-  ( -. ( # ` W ) = L -> ( ( # ` W ) = L -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							biimtrid | 
							 |-  ( -. ( # ` W ) = L -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 80 | 
							
								76 79
							 | 
							sylbi | 
							 |-  ( ( # ` W ) =/= L -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 81 | 
							
								75 80
							 | 
							syl | 
							 |-  ( ( L e. NN /\ L < ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							3adant2 | 
							 |-  ( ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 83 | 
							
								63 82
							 | 
							sylbi | 
							 |-  ( L e. ( 1 ..^ ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							com12 | 
							 |-  ( L = ( # ` W ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							ax-1 | 
							 |-  ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 87 | 
							
								72 85 86
							 | 
							3jaoi | 
							 |-  ( ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) )  | 
						
						
							| 88 | 
							
								62 87
							 | 
							mpcom | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							pm2.24d | 
							 |-  ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( W cyclShift L ) =/= W ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							exp31 | 
							 |-  ( ph -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( W cyclShift L ) =/= W ) ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							com34 | 
							 |-  ( ph -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							com23 | 
							 |-  ( ph -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) )  | 
						
						
							| 93 | 
							
								5 92
							 | 
							biimtrid | 
							 |-  ( ph -> ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							3imp | 
							 |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							com12 | 
							 |-  ( ( W cyclShift L ) = W -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) )  | 
						
						
							| 96 | 
							
								
							 | 
							ax-1 | 
							 |-  ( ( W cyclShift L ) =/= W -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							pm2.61ine | 
							 |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W )  |