Step |
Hyp |
Ref |
Expression |
1 |
|
cshwshash.0 |
|- ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) |
2 |
|
df-ne |
|- ( ( W ` i ) =/= ( W ` 0 ) <-> -. ( W ` i ) = ( W ` 0 ) ) |
3 |
2
|
rexbii |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) ) |
4 |
|
rexnal |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
5 |
3 4
|
bitri |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
6 |
|
simpll |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ph ) |
7 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) |
8 |
|
fzossfz |
|- ( 0 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) |
9 |
7 8
|
sstri |
|- ( 1 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) |
10 |
9
|
sseli |
|- ( L e. ( 1 ..^ ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
11 |
10
|
ad2antlr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> L e. ( 0 ... ( # ` W ) ) ) |
12 |
|
simpr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( W cyclShift L ) = W ) |
13 |
|
simpll |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> W e. Word V ) |
14 |
|
simpr |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` W ) e. Prime ) |
15 |
14
|
adantr |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` W ) e. Prime ) |
16 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` W ) ) -> L e. ZZ ) |
17 |
16
|
adantl |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. ZZ ) |
18 |
|
cshwsidrepswmod0 |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime /\ L e. ZZ ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
19 |
13 15 17 18
|
syl3anc |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
20 |
19
|
ex |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( L e. ( 0 ... ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) ) |
21 |
20
|
3imp |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
22 |
|
olc |
|- ( L = ( # ` W ) -> ( L = 0 \/ L = ( # ` W ) ) ) |
23 |
22
|
a1d |
|- ( L = ( # ` W ) -> ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) ) |
24 |
|
fzofzim |
|- ( ( L =/= ( # ` W ) /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. ( 0 ..^ ( # ` W ) ) ) |
25 |
|
zmodidfzoimp |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( L mod ( # ` W ) ) = L ) |
26 |
|
eqtr2 |
|- ( ( ( L mod ( # ` W ) ) = L /\ ( L mod ( # ` W ) ) = 0 ) -> L = 0 ) |
27 |
26
|
a1d |
|- ( ( ( L mod ( # ` W ) ) = L /\ ( L mod ( # ` W ) ) = 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) |
28 |
27
|
ex |
|- ( ( L mod ( # ` W ) ) = L -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) |
29 |
25 28
|
syl |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) |
30 |
24 29
|
syl |
|- ( ( L =/= ( # ` W ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) |
31 |
30
|
expcom |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( L =/= ( # ` W ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) ) |
32 |
31
|
com24 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) ) |
33 |
32
|
impcom |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) |
34 |
33
|
3adant3 |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) |
35 |
34
|
impcom |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L =/= ( # ` W ) -> L = 0 ) ) |
36 |
35
|
impcom |
|- ( ( L =/= ( # ` W ) /\ ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) ) -> L = 0 ) |
37 |
36
|
orcd |
|- ( ( L =/= ( # ` W ) /\ ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) |
38 |
37
|
ex |
|- ( L =/= ( # ` W ) -> ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) ) |
39 |
23 38
|
pm2.61ine |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) |
40 |
39
|
orcd |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( ( L = 0 \/ L = ( # ` W ) ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
41 |
|
df-3or |
|- ( ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) <-> ( ( L = 0 \/ L = ( # ` W ) ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
42 |
40 41
|
sylibr |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
43 |
42
|
ex |
|- ( ( L mod ( # ` W ) ) = 0 -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
44 |
|
3mix3 |
|- ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
45 |
44
|
a1d |
|- ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
46 |
43 45
|
jaoi |
|- ( ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
47 |
21 46
|
mpcom |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
48 |
1 47
|
syl3an1 |
|- ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
49 |
|
3mix1 |
|- ( L = 0 -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
50 |
49
|
a1d |
|- ( L = 0 -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
51 |
|
3mix2 |
|- ( L = ( # ` W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
52 |
51
|
a1d |
|- ( L = ( # ` W ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
53 |
|
repswsymballbi |
|- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
54 |
53
|
adantr |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
55 |
1 54
|
syl |
|- ( ph -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
56 |
55
|
3ad2ant1 |
|- ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
57 |
56
|
biimpa |
|- ( ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
58 |
57
|
3mix3d |
|- ( ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
59 |
58
|
expcom |
|- ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
60 |
50 52 59
|
3jaoi |
|- ( ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
61 |
48 60
|
mpcom |
|- ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
62 |
6 11 12 61
|
syl3anc |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
63 |
|
elfzo1 |
|- ( L e. ( 1 ..^ ( # ` W ) ) <-> ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) |
64 |
|
nnne0 |
|- ( L e. NN -> L =/= 0 ) |
65 |
|
df-ne |
|- ( L =/= 0 <-> -. L = 0 ) |
66 |
|
pm2.21 |
|- ( -. L = 0 -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
67 |
65 66
|
sylbi |
|- ( L =/= 0 -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
68 |
64 67
|
syl |
|- ( L e. NN -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
69 |
68
|
3ad2ant1 |
|- ( ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
70 |
63 69
|
sylbi |
|- ( L e. ( 1 ..^ ( # ` W ) ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
71 |
70
|
ad2antlr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
72 |
71
|
com12 |
|- ( L = 0 -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
73 |
|
nnre |
|- ( L e. NN -> L e. RR ) |
74 |
|
ltne |
|- ( ( L e. RR /\ L < ( # ` W ) ) -> ( # ` W ) =/= L ) |
75 |
73 74
|
sylan |
|- ( ( L e. NN /\ L < ( # ` W ) ) -> ( # ` W ) =/= L ) |
76 |
|
df-ne |
|- ( ( # ` W ) =/= L <-> -. ( # ` W ) = L ) |
77 |
|
eqcom |
|- ( L = ( # ` W ) <-> ( # ` W ) = L ) |
78 |
|
pm2.21 |
|- ( -. ( # ` W ) = L -> ( ( # ` W ) = L -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
79 |
77 78
|
syl5bi |
|- ( -. ( # ` W ) = L -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
80 |
76 79
|
sylbi |
|- ( ( # ` W ) =/= L -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
81 |
75 80
|
syl |
|- ( ( L e. NN /\ L < ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
82 |
81
|
3adant2 |
|- ( ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
83 |
63 82
|
sylbi |
|- ( L e. ( 1 ..^ ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
84 |
83
|
ad2antlr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
85 |
84
|
com12 |
|- ( L = ( # ` W ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
86 |
|
ax-1 |
|- ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
87 |
72 85 86
|
3jaoi |
|- ( ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
88 |
62 87
|
mpcom |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
89 |
88
|
pm2.24d |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( W cyclShift L ) =/= W ) ) |
90 |
89
|
exp31 |
|- ( ph -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( W cyclShift L ) =/= W ) ) ) ) |
91 |
90
|
com34 |
|- ( ph -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) ) |
92 |
91
|
com23 |
|- ( ph -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) ) |
93 |
5 92
|
syl5bi |
|- ( ph -> ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) ) |
94 |
93
|
3imp |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) |
95 |
94
|
com12 |
|- ( ( W cyclShift L ) = W -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) ) |
96 |
|
ax-1 |
|- ( ( W cyclShift L ) =/= W -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) ) |
97 |
95 96
|
pm2.61ine |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) |