Step |
Hyp |
Ref |
Expression |
1 |
|
cshwshash.0 |
|- ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) |
2 |
|
oveq1 |
|- ( ( W cyclShift L ) = ( W cyclShift K ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) ) |
3 |
2
|
eqcomd |
|- ( ( W cyclShift L ) = ( W cyclShift K ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) ) |
4 |
3
|
ad2antrr |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) ) |
5 |
1
|
simpld |
|- ( ph -> W e. Word V ) |
6 |
5
|
adantr |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> W e. Word V ) |
7 |
6
|
adantl |
|- ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) -> W e. Word V ) |
8 |
7
|
adantr |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> W e. Word V ) |
9 |
|
elfzofz |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> K e. ( 0 ... ( # ` W ) ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> K e. ( 0 ... ( # ` W ) ) ) |
11 |
10
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> K e. ( 0 ... ( # ` W ) ) ) |
12 |
|
elfzofz |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
13 |
|
fznn0sub2 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
14 |
12 13
|
syl |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
17 |
|
elfzo0 |
|- ( L e. ( 0 ..^ ( # ` W ) ) <-> ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) |
18 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
19 |
18
|
adantr |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> K e. RR ) |
20 |
|
nnre |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR ) |
21 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
22 |
|
resubcl |
|- ( ( ( # ` W ) e. RR /\ L e. RR ) -> ( ( # ` W ) - L ) e. RR ) |
23 |
20 21 22
|
syl2anr |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( ( # ` W ) - L ) e. RR ) |
24 |
23
|
adantl |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( ( # ` W ) - L ) e. RR ) |
25 |
19 24
|
readdcld |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( K + ( ( # ` W ) - L ) ) e. RR ) |
26 |
20
|
adantl |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( # ` W ) e. RR ) |
27 |
26
|
adantl |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( # ` W ) e. RR ) |
28 |
25 27
|
jca |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) |
29 |
28
|
ex |
|- ( K e. ZZ -> ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
30 |
|
elfzoelz |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> K e. ZZ ) |
31 |
29 30
|
syl11 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
32 |
31
|
3adant3 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
33 |
17 32
|
sylbi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
34 |
33
|
imp |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) |
35 |
34
|
3adant3 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) |
36 |
|
fzonmapblen |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) < ( # ` W ) ) |
37 |
|
ltle |
|- ( ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) -> ( ( K + ( ( # ` W ) - L ) ) < ( # ` W ) -> ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) |
38 |
35 36 37
|
sylc |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) |
39 |
38
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) |
40 |
|
simpl |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> W e. Word V ) |
41 |
|
elfzelz |
|- ( K e. ( 0 ... ( # ` W ) ) -> K e. ZZ ) |
42 |
41
|
3ad2ant1 |
|- ( ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) -> K e. ZZ ) |
43 |
42
|
adantl |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> K e. ZZ ) |
44 |
|
elfzelz |
|- ( ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
45 |
44
|
3ad2ant2 |
|- ( ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
46 |
45
|
adantl |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
47 |
|
2cshw |
|- ( ( W e. Word V /\ K e. ZZ /\ ( ( # ` W ) - L ) e. ZZ ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) ) |
48 |
40 43 46 47
|
syl3anc |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) ) |
49 |
8 11 16 39 48
|
syl13anc |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) ) |
50 |
12
|
3ad2ant1 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> L e. ( 0 ... ( # ` W ) ) ) |
51 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` W ) ) -> L e. ZZ ) |
52 |
|
2cshwid |
|- ( ( W e. Word V /\ L e. ZZ ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = W ) |
53 |
51 52
|
sylan2 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = W ) |
54 |
7 50 53
|
syl2an |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = W ) |
55 |
4 49 54
|
3eqtr3d |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) = W ) |
56 |
|
simplrl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ph ) |
57 |
|
simplrr |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) |
58 |
|
3simpa |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L e. NN0 /\ ( # ` W ) e. NN ) ) |
59 |
17 58
|
sylbi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( L e. NN0 /\ ( # ` W ) e. NN ) ) |
60 |
|
nnz |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. ZZ ) |
61 |
|
nn0z |
|- ( L e. NN0 -> L e. ZZ ) |
62 |
|
zsubcl |
|- ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) -> ( ( # ` W ) - L ) e. ZZ ) |
63 |
60 61 62
|
syl2anr |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( ( # ` W ) - L ) e. ZZ ) |
64 |
63
|
anim1ci |
|- ( ( ( L e. NN0 /\ ( # ` W ) e. NN ) /\ K e. ZZ ) -> ( K e. ZZ /\ ( ( # ` W ) - L ) e. ZZ ) ) |
65 |
|
zaddcl |
|- ( ( K e. ZZ /\ ( ( # ` W ) - L ) e. ZZ ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
66 |
64 65
|
syl |
|- ( ( ( L e. NN0 /\ ( # ` W ) e. NN ) /\ K e. ZZ ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
67 |
59 30 66
|
syl2an |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
68 |
67
|
3adant3 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
69 |
|
elfzo0 |
|- ( K e. ( 0 ..^ ( # ` W ) ) <-> ( K e. NN0 /\ ( # ` W ) e. NN /\ K < ( # ` W ) ) ) |
70 |
|
elnn0z |
|- ( K e. NN0 <-> ( K e. ZZ /\ 0 <_ K ) ) |
71 |
18
|
ad2antrr |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> K e. RR ) |
72 |
23
|
3adant3 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( ( # ` W ) - L ) e. RR ) |
73 |
72
|
adantl |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> ( ( # ` W ) - L ) e. RR ) |
74 |
|
simplr |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> 0 <_ K ) |
75 |
|
posdif |
|- ( ( L e. RR /\ ( # ` W ) e. RR ) -> ( L < ( # ` W ) <-> 0 < ( ( # ` W ) - L ) ) ) |
76 |
21 20 75
|
syl2an |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( L < ( # ` W ) <-> 0 < ( ( # ` W ) - L ) ) ) |
77 |
76
|
biimp3a |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( ( # ` W ) - L ) ) |
78 |
77
|
adantl |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> 0 < ( ( # ` W ) - L ) ) |
79 |
71 73 74 78
|
addgegt0d |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) |
80 |
79
|
ex |
|- ( ( K e. ZZ /\ 0 <_ K ) -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
81 |
70 80
|
sylbi |
|- ( K e. NN0 -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
82 |
81
|
3ad2ant1 |
|- ( ( K e. NN0 /\ ( # ` W ) e. NN /\ K < ( # ` W ) ) -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
83 |
69 82
|
sylbi |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
84 |
83
|
com12 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
85 |
17 84
|
sylbi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
86 |
85
|
imp |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) |
87 |
86
|
3adant3 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) |
88 |
|
elnnz |
|- ( ( K + ( ( # ` W ) - L ) ) e. NN <-> ( ( K + ( ( # ` W ) - L ) ) e. ZZ /\ 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
89 |
68 87 88
|
sylanbrc |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) e. NN ) |
90 |
17
|
simp2bi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
91 |
90
|
3ad2ant1 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( # ` W ) e. NN ) |
92 |
|
elfzo1 |
|- ( ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) <-> ( ( K + ( ( # ` W ) - L ) ) e. NN /\ ( # ` W ) e. NN /\ ( K + ( ( # ` W ) - L ) ) < ( # ` W ) ) ) |
93 |
89 91 36 92
|
syl3anbrc |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) ) |
94 |
93
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) ) |
95 |
1
|
cshwshashlem1 |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) =/= W ) |
96 |
56 57 94 95
|
syl3anc |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) =/= W ) |
97 |
55 96
|
pm2.21ddne |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) |
98 |
97
|
exp31 |
|- ( ( W cyclShift L ) = ( W cyclShift K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
99 |
|
2a1 |
|- ( ( W cyclShift L ) =/= ( W cyclShift K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
100 |
98 99
|
pm2.61ine |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |