Step |
Hyp |
Ref |
Expression |
1 |
|
cshwshash.0 |
|- ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) |
2 |
|
elfzoelz |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> K e. ZZ ) |
3 |
2
|
zred |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> K e. RR ) |
4 |
|
elfzoelz |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> L e. ZZ ) |
5 |
4
|
zred |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> L e. RR ) |
6 |
|
lttri2 |
|- ( ( K e. RR /\ L e. RR ) -> ( K =/= L <-> ( K < L \/ L < K ) ) ) |
7 |
3 5 6
|
syl2anr |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K =/= L <-> ( K < L \/ L < K ) ) ) |
8 |
1
|
cshwshashlem2 |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |
9 |
8
|
com12 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |
10 |
9
|
3expia |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K < L -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
11 |
1
|
cshwshashlem2 |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) -> ( W cyclShift K ) =/= ( W cyclShift L ) ) ) |
12 |
11
|
imp |
|- ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) ) -> ( W cyclShift K ) =/= ( W cyclShift L ) ) |
13 |
12
|
necomd |
|- ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) |
14 |
13
|
expcom |
|- ( ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |
15 |
14
|
3expia |
|- ( ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) ) -> ( L < K -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
16 |
15
|
ancoms |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( L < K -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
17 |
10 16
|
jaod |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( ( K < L \/ L < K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
18 |
7 17
|
sylbid |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K =/= L -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
19 |
18
|
3impia |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K =/= L ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |
20 |
19
|
com12 |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K =/= L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |