Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( ( # ` W ) = 0 -> ( N - ( # ` W ) ) = ( N - 0 ) ) |
2 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
3 |
2
|
subid1d |
|- ( N e. ZZ -> ( N - 0 ) = N ) |
4 |
3
|
adantl |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( N - 0 ) = N ) |
5 |
1 4
|
sylan9eq |
|- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N - ( # ` W ) ) = N ) |
6 |
5
|
eqcomd |
|- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> N = ( N - ( # ` W ) ) ) |
7 |
6
|
oveq2d |
|- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
8 |
7
|
ex |
|- ( ( # ` W ) = 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) |
9 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
10 |
9
|
adantl |
|- ( ( W e. Word V /\ N e. ZZ ) -> N e. RR ) |
11 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
12 |
|
elnnne0 |
|- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) |
13 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
14 |
12 13
|
sylbir |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( # ` W ) e. RR+ ) |
15 |
14
|
ex |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
16 |
11 15
|
syl |
|- ( W e. Word V -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
17 |
16
|
adantr |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
18 |
17
|
impcom |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( # ` W ) e. RR+ ) |
19 |
|
modeqmodmin |
|- ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) |
20 |
10 18 19
|
syl2an2 |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) |
21 |
20
|
oveq2d |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
22 |
|
cshwmodn |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
24 |
|
simpl |
|- ( ( W e. Word V /\ N e. ZZ ) -> W e. Word V ) |
25 |
11
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
26 |
|
zsubcl |
|- ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) |
27 |
25 26
|
sylan2 |
|- ( ( N e. ZZ /\ W e. Word V ) -> ( N - ( # ` W ) ) e. ZZ ) |
28 |
27
|
ancoms |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) |
29 |
24 28
|
jca |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) |
30 |
29
|
adantl |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) |
31 |
|
cshwmodn |
|- ( ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
32 |
30 31
|
syl |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
33 |
21 23 32
|
3eqtr4d |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
34 |
33
|
ex |
|- ( ( # ` W ) =/= 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) |
35 |
8 34
|
pm2.61ine |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |