| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( ( # ` W ) = 0 -> ( N - ( # ` W ) ) = ( N - 0 ) ) |
| 2 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 3 |
2
|
subid1d |
|- ( N e. ZZ -> ( N - 0 ) = N ) |
| 4 |
3
|
adantl |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( N - 0 ) = N ) |
| 5 |
1 4
|
sylan9eq |
|- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N - ( # ` W ) ) = N ) |
| 6 |
5
|
eqcomd |
|- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> N = ( N - ( # ` W ) ) ) |
| 7 |
6
|
oveq2d |
|- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
| 8 |
7
|
ex |
|- ( ( # ` W ) = 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) |
| 9 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 10 |
9
|
adantl |
|- ( ( W e. Word V /\ N e. ZZ ) -> N e. RR ) |
| 11 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
| 12 |
|
elnnne0 |
|- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) |
| 13 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
| 14 |
12 13
|
sylbir |
|- ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( # ` W ) e. RR+ ) |
| 15 |
14
|
ex |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
| 16 |
11 15
|
syl |
|- ( W e. Word V -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
| 17 |
16
|
adantr |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
| 18 |
17
|
impcom |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( # ` W ) e. RR+ ) |
| 19 |
|
modeqmodmin |
|- ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) |
| 20 |
10 18 19
|
syl2an2 |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) |
| 21 |
20
|
oveq2d |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
| 22 |
|
cshwmodn |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
| 24 |
|
simpl |
|- ( ( W e. Word V /\ N e. ZZ ) -> W e. Word V ) |
| 25 |
11
|
nn0zd |
|- ( W e. Word V -> ( # ` W ) e. ZZ ) |
| 26 |
|
zsubcl |
|- ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) |
| 27 |
25 26
|
sylan2 |
|- ( ( N e. ZZ /\ W e. Word V ) -> ( N - ( # ` W ) ) e. ZZ ) |
| 28 |
27
|
ancoms |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) |
| 29 |
24 28
|
jca |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) |
| 30 |
29
|
adantl |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) |
| 31 |
|
cshwmodn |
|- ( ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
| 33 |
21 23 32
|
3eqtr4d |
|- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
| 34 |
33
|
ex |
|- ( ( # ` W ) =/= 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) |
| 35 |
8 34
|
pm2.61ine |
|- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |