Step |
Hyp |
Ref |
Expression |
1 |
|
csmdsym.1 |
|- A e. CH |
2 |
|
csmdsym.2 |
|- B e. CH |
3 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
4 |
3
|
sseq1i |
|- ( ( A i^i B ) C_ x <-> ( B i^i A ) C_ x ) |
5 |
4
|
biimpri |
|- ( ( B i^i A ) C_ x -> ( A i^i B ) C_ x ) |
6 |
|
chjcom |
|- ( ( x e. CH /\ B e. CH ) -> ( x vH B ) = ( B vH x ) ) |
7 |
2 6
|
mpan2 |
|- ( x e. CH -> ( x vH B ) = ( B vH x ) ) |
8 |
7
|
ineq1d |
|- ( x e. CH -> ( ( x vH B ) i^i A ) = ( ( B vH x ) i^i A ) ) |
9 |
|
incom |
|- ( ( B vH x ) i^i A ) = ( A i^i ( B vH x ) ) |
10 |
8 9
|
eqtrdi |
|- ( x e. CH -> ( ( x vH B ) i^i A ) = ( A i^i ( B vH x ) ) ) |
11 |
10
|
ad2antlr |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( ( x vH B ) i^i A ) = ( A i^i ( B vH x ) ) ) |
12 |
2
|
a1i |
|- ( x e. CH -> B e. CH ) |
13 |
|
id |
|- ( x e. CH -> x e. CH ) |
14 |
1
|
a1i |
|- ( x e. CH -> A e. CH ) |
15 |
12 13 14
|
3jca |
|- ( x e. CH -> ( B e. CH /\ x e. CH /\ A e. CH ) ) |
16 |
15
|
ad2antlr |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( B e. CH /\ x e. CH /\ A e. CH ) ) |
17 |
|
inss2 |
|- ( A i^i B ) C_ B |
18 |
|
ssid |
|- B C_ B |
19 |
17 18
|
pm3.2i |
|- ( ( A i^i B ) C_ B /\ B C_ B ) |
20 |
|
sseq2 |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( A i^i B ) C_ x <-> ( A i^i B ) C_ if ( x e. CH , x , 0H ) ) ) |
21 |
|
sseq1 |
|- ( x = if ( x e. CH , x , 0H ) -> ( x C_ A <-> if ( x e. CH , x , 0H ) C_ A ) ) |
22 |
20 21
|
anbi12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( A i^i B ) C_ x /\ x C_ A ) <-> ( ( A i^i B ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ A ) ) ) |
23 |
22
|
3anbi2d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( A MH B /\ ( ( A i^i B ) C_ x /\ x C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) <-> ( A MH B /\ ( ( A i^i B ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) ) ) |
24 |
|
breq1 |
|- ( x = if ( x e. CH , x , 0H ) -> ( x MH B <-> if ( x e. CH , x , 0H ) MH B ) ) |
25 |
23 24
|
imbi12d |
|- ( x = if ( x e. CH , x , 0H ) -> ( ( ( A MH B /\ ( ( A i^i B ) C_ x /\ x C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) -> x MH B ) <-> ( ( A MH B /\ ( ( A i^i B ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) -> if ( x e. CH , x , 0H ) MH B ) ) ) |
26 |
|
h0elch |
|- 0H e. CH |
27 |
26
|
elimel |
|- if ( x e. CH , x , 0H ) e. CH |
28 |
1 2 27 2
|
mdslmd4i |
|- ( ( A MH B /\ ( ( A i^i B ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) -> if ( x e. CH , x , 0H ) MH B ) |
29 |
25 28
|
dedth |
|- ( x e. CH -> ( ( A MH B /\ ( ( A i^i B ) C_ x /\ x C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) -> x MH B ) ) |
30 |
29
|
com12 |
|- ( ( A MH B /\ ( ( A i^i B ) C_ x /\ x C_ A ) /\ ( ( A i^i B ) C_ B /\ B C_ B ) ) -> ( x e. CH -> x MH B ) ) |
31 |
19 30
|
mp3an3 |
|- ( ( A MH B /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( x e. CH -> x MH B ) ) |
32 |
31
|
imp |
|- ( ( ( A MH B /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) /\ x e. CH ) -> x MH B ) |
33 |
32
|
an32s |
|- ( ( ( A MH B /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> x MH B ) |
34 |
33
|
adantlll |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> x MH B ) |
35 |
|
breq1 |
|- ( c = x -> ( c MH B <-> x MH B ) ) |
36 |
|
breq2 |
|- ( c = x -> ( B MH* c <-> B MH* x ) ) |
37 |
35 36
|
imbi12d |
|- ( c = x -> ( ( c MH B -> B MH* c ) <-> ( x MH B -> B MH* x ) ) ) |
38 |
37
|
rspccva |
|- ( ( A. c e. CH ( c MH B -> B MH* c ) /\ x e. CH ) -> ( x MH B -> B MH* x ) ) |
39 |
38
|
adantlr |
|- ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) -> ( x MH B -> B MH* x ) ) |
40 |
39
|
adantr |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( x MH B -> B MH* x ) ) |
41 |
34 40
|
mpd |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> B MH* x ) |
42 |
|
simprr |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> x C_ A ) |
43 |
|
dmdi |
|- ( ( ( B e. CH /\ x e. CH /\ A e. CH ) /\ ( B MH* x /\ x C_ A ) ) -> ( ( A i^i B ) vH x ) = ( A i^i ( B vH x ) ) ) |
44 |
16 41 42 43
|
syl12anc |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( ( A i^i B ) vH x ) = ( A i^i ( B vH x ) ) ) |
45 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
46 |
|
chjcom |
|- ( ( ( A i^i B ) e. CH /\ x e. CH ) -> ( ( A i^i B ) vH x ) = ( x vH ( A i^i B ) ) ) |
47 |
45 46
|
mpan |
|- ( x e. CH -> ( ( A i^i B ) vH x ) = ( x vH ( A i^i B ) ) ) |
48 |
3
|
oveq2i |
|- ( x vH ( A i^i B ) ) = ( x vH ( B i^i A ) ) |
49 |
47 48
|
eqtrdi |
|- ( x e. CH -> ( ( A i^i B ) vH x ) = ( x vH ( B i^i A ) ) ) |
50 |
49
|
ad2antlr |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( ( A i^i B ) vH x ) = ( x vH ( B i^i A ) ) ) |
51 |
11 44 50
|
3eqtr2d |
|- ( ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) /\ ( ( A i^i B ) C_ x /\ x C_ A ) ) -> ( ( x vH B ) i^i A ) = ( x vH ( B i^i A ) ) ) |
52 |
51
|
ex |
|- ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) -> ( ( ( A i^i B ) C_ x /\ x C_ A ) -> ( ( x vH B ) i^i A ) = ( x vH ( B i^i A ) ) ) ) |
53 |
5 52
|
sylani |
|- ( ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) /\ x e. CH ) -> ( ( ( B i^i A ) C_ x /\ x C_ A ) -> ( ( x vH B ) i^i A ) = ( x vH ( B i^i A ) ) ) ) |
54 |
53
|
ralrimiva |
|- ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) -> A. x e. CH ( ( ( B i^i A ) C_ x /\ x C_ A ) -> ( ( x vH B ) i^i A ) = ( x vH ( B i^i A ) ) ) ) |
55 |
2 1
|
mdsl2bi |
|- ( B MH A <-> A. x e. CH ( ( ( B i^i A ) C_ x /\ x C_ A ) -> ( ( x vH B ) i^i A ) = ( x vH ( B i^i A ) ) ) ) |
56 |
54 55
|
sylibr |
|- ( ( A. c e. CH ( c MH B -> B MH* c ) /\ A MH B ) -> B MH A ) |