Step |
Hyp |
Ref |
Expression |
1 |
|
css0.c |
|- C = ( ClSubSp ` W ) |
2 |
|
css0.z |
|- .0. = ( 0g ` W ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
5 |
3 4 2
|
ocv1 |
|- ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) = { .0. } ) |
6 |
|
ssid |
|- ( Base ` W ) C_ ( Base ` W ) |
7 |
3 1 4
|
ocvcss |
|- ( ( W e. PreHil /\ ( Base ` W ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C ) |
8 |
6 7
|
mpan2 |
|- ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C ) |
9 |
5 8
|
eqeltrrd |
|- ( W e. PreHil -> { .0. } e. C ) |