Metamath Proof Explorer


Theorem css0

Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css0.c
|- C = ( ClSubSp ` W )
css0.z
|- .0. = ( 0g ` W )
Assertion css0
|- ( W e. PreHil -> { .0. } e. C )

Proof

Step Hyp Ref Expression
1 css0.c
 |-  C = ( ClSubSp ` W )
2 css0.z
 |-  .0. = ( 0g ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 eqid
 |-  ( ocv ` W ) = ( ocv ` W )
5 3 4 2 ocv1
 |-  ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) = { .0. } )
6 ssid
 |-  ( Base ` W ) C_ ( Base ` W )
7 3 1 4 ocvcss
 |-  ( ( W e. PreHil /\ ( Base ` W ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C )
8 6 7 mpan2
 |-  ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C )
9 5 8 eqeltrrd
 |-  ( W e. PreHil -> { .0. } e. C )