Metamath Proof Explorer


Theorem css1

Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css1.v
|- V = ( Base ` W )
css1.c
|- C = ( ClSubSp ` W )
Assertion css1
|- ( W e. PreHil -> V e. C )

Proof

Step Hyp Ref Expression
1 css1.v
 |-  V = ( Base ` W )
2 css1.c
 |-  C = ( ClSubSp ` W )
3 eqid
 |-  ( ocv ` W ) = ( ocv ` W )
4 1 3 ocv0
 |-  ( ( ocv ` W ) ` (/) ) = V
5 0ss
 |-  (/) C_ V
6 1 2 3 ocvcss
 |-  ( ( W e. PreHil /\ (/) C_ V ) -> ( ( ocv ` W ) ` (/) ) e. C )
7 5 6 mpan2
 |-  ( W e. PreHil -> ( ( ocv ` W ) ` (/) ) e. C )
8 4 7 eqeltrrid
 |-  ( W e. PreHil -> V e. C )