Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | css1.v | |- V = ( Base ` W ) |
|
css1.c | |- C = ( ClSubSp ` W ) |
||
Assertion | css1 | |- ( W e. PreHil -> V e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | css1.v | |- V = ( Base ` W ) |
|
2 | css1.c | |- C = ( ClSubSp ` W ) |
|
3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
4 | 1 3 | ocv0 | |- ( ( ocv ` W ) ` (/) ) = V |
5 | 0ss | |- (/) C_ V |
|
6 | 1 2 3 | ocvcss | |- ( ( W e. PreHil /\ (/) C_ V ) -> ( ( ocv ` W ) ` (/) ) e. C ) |
7 | 5 6 | mpan2 | |- ( W e. PreHil -> ( ( ocv ` W ) ` (/) ) e. C ) |
8 | 4 7 | eqeltrrid | |- ( W e. PreHil -> V e. C ) |