Step |
Hyp |
Ref |
Expression |
1 |
|
cssbn.x |
|- X = ( W |`s U ) |
2 |
|
cssbn.s |
|- S = ( LSubSp ` W ) |
3 |
|
cssbn.d |
|- D = ( ( dist ` W ) |` ( U X. U ) ) |
4 |
|
csschl.c |
|- ( Scalar ` W ) = CCfld |
5 |
|
cphnvc |
|- ( W e. CPreHil -> W e. NrmVec ) |
6 |
5
|
3ad2ant1 |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> W e. NrmVec ) |
7 |
|
cncms |
|- CCfld e. CMetSp |
8 |
|
eleq1 |
|- ( ( Scalar ` W ) = CCfld -> ( ( Scalar ` W ) e. CMetSp <-> CCfld e. CMetSp ) ) |
9 |
7 8
|
mpbiri |
|- ( ( Scalar ` W ) = CCfld -> ( Scalar ` W ) e. CMetSp ) |
10 |
4 9
|
mp1i |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` W ) e. CMetSp ) |
11 |
|
simp2 |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> U e. S ) |
12 |
|
simp3 |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) |
13 |
1 2 3
|
cssbn |
|- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |
14 |
6 10 11 12 13
|
syl31anc |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |
15 |
1 2
|
cphssphl |
|- ( ( W e. CPreHil /\ U e. S /\ X e. Ban ) -> X e. CHil ) |
16 |
14 15
|
syld3an3 |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. CHil ) |
17 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
18 |
1 17
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
19 |
18 4
|
eqtr3di |
|- ( U e. S -> ( Scalar ` X ) = CCfld ) |
20 |
19
|
3ad2ant2 |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` X ) = CCfld ) |
21 |
16 20
|
jca |
|- ( ( W e. CPreHil /\ U e. S /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( X e. CHil /\ ( Scalar ` X ) = CCfld ) ) |