Metamath Proof Explorer


Theorem cssi

Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o
|- ._|_ = ( ocv ` W )
cssval.c
|- C = ( ClSubSp ` W )
Assertion cssi
|- ( S e. C -> S = ( ._|_ ` ( ._|_ ` S ) ) )

Proof

Step Hyp Ref Expression
1 cssval.o
 |-  ._|_ = ( ocv ` W )
2 cssval.c
 |-  C = ( ClSubSp ` W )
3 elfvdm
 |-  ( S e. ( ClSubSp ` W ) -> W e. dom ClSubSp )
4 3 2 eleq2s
 |-  ( S e. C -> W e. dom ClSubSp )
5 1 2 iscss
 |-  ( W e. dom ClSubSp -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )
6 4 5 syl
 |-  ( S e. C -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) )
7 6 ibi
 |-  ( S e. C -> S = ( ._|_ ` ( ._|_ ` S ) ) )