Step |
Hyp |
Ref |
Expression |
1 |
|
cssmre.v |
|- V = ( Base ` W ) |
2 |
|
cssmre.c |
|- C = ( ClSubSp ` W ) |
3 |
1 2
|
cssss |
|- ( x e. C -> x C_ V ) |
4 |
|
velpw |
|- ( x e. ~P V <-> x C_ V ) |
5 |
3 4
|
sylibr |
|- ( x e. C -> x e. ~P V ) |
6 |
5
|
a1i |
|- ( W e. PreHil -> ( x e. C -> x e. ~P V ) ) |
7 |
6
|
ssrdv |
|- ( W e. PreHil -> C C_ ~P V ) |
8 |
1 2
|
css1 |
|- ( W e. PreHil -> V e. C ) |
9 |
|
intss1 |
|- ( z e. x -> |^| x C_ z ) |
10 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
11 |
10
|
ocv2ss |
|- ( |^| x C_ z -> ( ( ocv ` W ) ` z ) C_ ( ( ocv ` W ) ` |^| x ) ) |
12 |
10
|
ocv2ss |
|- ( ( ( ocv ` W ) ` z ) C_ ( ( ocv ` W ) ` |^| x ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
13 |
9 11 12
|
3syl |
|- ( z e. x -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
14 |
13
|
ad2antll |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
15 |
|
simprl |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) |
16 |
14 15
|
sseldd |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
17 |
|
simpl2 |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> x C_ C ) |
18 |
|
simprr |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> z e. x ) |
19 |
17 18
|
sseldd |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> z e. C ) |
20 |
10 2
|
cssi |
|- ( z e. C -> z = ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
21 |
19 20
|
syl |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> z = ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
22 |
16 21
|
eleqtrrd |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> y e. z ) |
23 |
22
|
expr |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) -> ( z e. x -> y e. z ) ) |
24 |
23
|
alrimiv |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) -> A. z ( z e. x -> y e. z ) ) |
25 |
|
vex |
|- y e. _V |
26 |
25
|
elint |
|- ( y e. |^| x <-> A. z ( z e. x -> y e. z ) ) |
27 |
24 26
|
sylibr |
|- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) -> y e. |^| x ) |
28 |
27
|
ex |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) -> y e. |^| x ) ) |
29 |
28
|
ssrdv |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ |^| x ) |
30 |
|
simp1 |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> W e. PreHil ) |
31 |
|
intssuni |
|- ( x =/= (/) -> |^| x C_ U. x ) |
32 |
31
|
3ad2ant3 |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> |^| x C_ U. x ) |
33 |
|
simp2 |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> x C_ C ) |
34 |
7
|
3ad2ant1 |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> C C_ ~P V ) |
35 |
33 34
|
sstrd |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> x C_ ~P V ) |
36 |
|
sspwuni |
|- ( x C_ ~P V <-> U. x C_ V ) |
37 |
35 36
|
sylib |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> U. x C_ V ) |
38 |
32 37
|
sstrd |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> |^| x C_ V ) |
39 |
1 2 10
|
iscss2 |
|- ( ( W e. PreHil /\ |^| x C_ V ) -> ( |^| x e. C <-> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ |^| x ) ) |
40 |
30 38 39
|
syl2anc |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> ( |^| x e. C <-> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ |^| x ) ) |
41 |
29 40
|
mpbird |
|- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
42 |
7 8 41
|
ismred |
|- ( W e. PreHil -> C e. ( Moore ` V ) ) |