Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | |- V = ( Base ` W ) |
|
| cssss.c | |- C = ( ClSubSp ` W ) |
||
| Assertion | cssss | |- ( S e. C -> S C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssss.v | |- V = ( Base ` W ) |
|
| 2 | cssss.c | |- C = ( ClSubSp ` W ) |
|
| 3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 4 | 3 2 | cssi | |- ( S e. C -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) |
| 5 | 1 3 | ocvss | |- ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) C_ V |
| 6 | 4 5 | eqsstrdi | |- ( S e. C -> S C_ V ) |