Metamath Proof Explorer


Theorem ctbnfien

Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion ctbnfien
|- ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> A ~~ Y )

Proof

Step Hyp Ref Expression
1 isfinite
 |-  ( A e. Fin <-> A ~< _om )
2 1 notbii
 |-  ( -. A e. Fin <-> -. A ~< _om )
3 relen
 |-  Rel ~~
4 3 brrelex1i
 |-  ( X ~~ _om -> X e. _V )
5 ssdomg
 |-  ( X e. _V -> ( A C_ X -> A ~<_ X ) )
6 4 5 syl
 |-  ( X ~~ _om -> ( A C_ X -> A ~<_ X ) )
7 domen2
 |-  ( X ~~ _om -> ( A ~<_ X <-> A ~<_ _om ) )
8 6 7 sylibd
 |-  ( X ~~ _om -> ( A C_ X -> A ~<_ _om ) )
9 8 imp
 |-  ( ( X ~~ _om /\ A C_ X ) -> A ~<_ _om )
10 brdom2
 |-  ( A ~<_ _om <-> ( A ~< _om \/ A ~~ _om ) )
11 9 10 sylib
 |-  ( ( X ~~ _om /\ A C_ X ) -> ( A ~< _om \/ A ~~ _om ) )
12 11 adantlr
 |-  ( ( ( X ~~ _om /\ Y ~~ _om ) /\ A C_ X ) -> ( A ~< _om \/ A ~~ _om ) )
13 12 ord
 |-  ( ( ( X ~~ _om /\ Y ~~ _om ) /\ A C_ X ) -> ( -. A ~< _om -> A ~~ _om ) )
14 2 13 syl5bi
 |-  ( ( ( X ~~ _om /\ Y ~~ _om ) /\ A C_ X ) -> ( -. A e. Fin -> A ~~ _om ) )
15 14 impr
 |-  ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> A ~~ _om )
16 enen2
 |-  ( Y ~~ _om -> ( A ~~ Y <-> A ~~ _om ) )
17 16 ad2antlr
 |-  ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> ( A ~~ Y <-> A ~~ _om ) )
18 15 17 mpbird
 |-  ( ( ( X ~~ _om /\ Y ~~ _om ) /\ ( A C_ X /\ -. A e. Fin ) ) -> A ~~ Y )