Step |
Hyp |
Ref |
Expression |
1 |
|
cubic2.a |
|- ( ph -> A e. CC ) |
2 |
|
cubic2.z |
|- ( ph -> A =/= 0 ) |
3 |
|
cubic2.b |
|- ( ph -> B e. CC ) |
4 |
|
cubic2.c |
|- ( ph -> C e. CC ) |
5 |
|
cubic2.d |
|- ( ph -> D e. CC ) |
6 |
|
cubic2.x |
|- ( ph -> X e. CC ) |
7 |
|
cubic2.t |
|- ( ph -> T e. CC ) |
8 |
|
cubic2.3 |
|- ( ph -> ( T ^ 3 ) = ( ( N + G ) / 2 ) ) |
9 |
|
cubic2.g |
|- ( ph -> G e. CC ) |
10 |
|
cubic2.2 |
|- ( ph -> ( G ^ 2 ) = ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) ) |
11 |
|
cubic2.m |
|- ( ph -> M = ( ( B ^ 2 ) - ( 3 x. ( A x. C ) ) ) ) |
12 |
|
cubic2.n |
|- ( ph -> N = ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) + ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) ) ) |
13 |
|
cubic2.0 |
|- ( ph -> T =/= 0 ) |
14 |
|
3nn0 |
|- 3 e. NN0 |
15 |
|
expcl |
|- ( ( X e. CC /\ 3 e. NN0 ) -> ( X ^ 3 ) e. CC ) |
16 |
6 14 15
|
sylancl |
|- ( ph -> ( X ^ 3 ) e. CC ) |
17 |
1 16
|
mulcld |
|- ( ph -> ( A x. ( X ^ 3 ) ) e. CC ) |
18 |
6
|
sqcld |
|- ( ph -> ( X ^ 2 ) e. CC ) |
19 |
3 18
|
mulcld |
|- ( ph -> ( B x. ( X ^ 2 ) ) e. CC ) |
20 |
17 19
|
addcld |
|- ( ph -> ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) e. CC ) |
21 |
4 6
|
mulcld |
|- ( ph -> ( C x. X ) e. CC ) |
22 |
21 5
|
addcld |
|- ( ph -> ( ( C x. X ) + D ) e. CC ) |
23 |
20 22
|
addcld |
|- ( ph -> ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) e. CC ) |
24 |
23 1 2
|
diveq0ad |
|- ( ph -> ( ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) / A ) = 0 <-> ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 ) ) |
25 |
20 22 1 2
|
divdird |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) / A ) = ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) / A ) + ( ( ( C x. X ) + D ) / A ) ) ) |
26 |
17 19 1 2
|
divdird |
|- ( ph -> ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) / A ) = ( ( ( A x. ( X ^ 3 ) ) / A ) + ( ( B x. ( X ^ 2 ) ) / A ) ) ) |
27 |
16 1 2
|
divcan3d |
|- ( ph -> ( ( A x. ( X ^ 3 ) ) / A ) = ( X ^ 3 ) ) |
28 |
3 18 1 2
|
div23d |
|- ( ph -> ( ( B x. ( X ^ 2 ) ) / A ) = ( ( B / A ) x. ( X ^ 2 ) ) ) |
29 |
27 28
|
oveq12d |
|- ( ph -> ( ( ( A x. ( X ^ 3 ) ) / A ) + ( ( B x. ( X ^ 2 ) ) / A ) ) = ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) ) |
30 |
26 29
|
eqtrd |
|- ( ph -> ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) / A ) = ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) ) |
31 |
21 5 1 2
|
divdird |
|- ( ph -> ( ( ( C x. X ) + D ) / A ) = ( ( ( C x. X ) / A ) + ( D / A ) ) ) |
32 |
4 6 1 2
|
div23d |
|- ( ph -> ( ( C x. X ) / A ) = ( ( C / A ) x. X ) ) |
33 |
32
|
oveq1d |
|- ( ph -> ( ( ( C x. X ) / A ) + ( D / A ) ) = ( ( ( C / A ) x. X ) + ( D / A ) ) ) |
34 |
31 33
|
eqtrd |
|- ( ph -> ( ( ( C x. X ) + D ) / A ) = ( ( ( C / A ) x. X ) + ( D / A ) ) ) |
35 |
30 34
|
oveq12d |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) / A ) + ( ( ( C x. X ) + D ) / A ) ) = ( ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) + ( ( ( C / A ) x. X ) + ( D / A ) ) ) ) |
36 |
25 35
|
eqtrd |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) / A ) = ( ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) + ( ( ( C / A ) x. X ) + ( D / A ) ) ) ) |
37 |
36
|
eqeq1d |
|- ( ph -> ( ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) / A ) = 0 <-> ( ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) + ( ( ( C / A ) x. X ) + ( D / A ) ) ) = 0 ) ) |
38 |
24 37
|
bitr3d |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) + ( ( ( C / A ) x. X ) + ( D / A ) ) ) = 0 ) ) |
39 |
3 1 2
|
divcld |
|- ( ph -> ( B / A ) e. CC ) |
40 |
4 1 2
|
divcld |
|- ( ph -> ( C / A ) e. CC ) |
41 |
5 1 2
|
divcld |
|- ( ph -> ( D / A ) e. CC ) |
42 |
7 1 2
|
divcld |
|- ( ph -> ( T / A ) e. CC ) |
43 |
14
|
a1i |
|- ( ph -> 3 e. NN0 ) |
44 |
7 1 2 43
|
expdivd |
|- ( ph -> ( ( T / A ) ^ 3 ) = ( ( T ^ 3 ) / ( A ^ 3 ) ) ) |
45 |
8
|
oveq1d |
|- ( ph -> ( ( T ^ 3 ) / ( A ^ 3 ) ) = ( ( ( N + G ) / 2 ) / ( A ^ 3 ) ) ) |
46 |
|
2cn |
|- 2 e. CC |
47 |
|
expcl |
|- ( ( B e. CC /\ 3 e. NN0 ) -> ( B ^ 3 ) e. CC ) |
48 |
3 14 47
|
sylancl |
|- ( ph -> ( B ^ 3 ) e. CC ) |
49 |
|
mulcl |
|- ( ( 2 e. CC /\ ( B ^ 3 ) e. CC ) -> ( 2 x. ( B ^ 3 ) ) e. CC ) |
50 |
46 48 49
|
sylancr |
|- ( ph -> ( 2 x. ( B ^ 3 ) ) e. CC ) |
51 |
|
9cn |
|- 9 e. CC |
52 |
|
mulcl |
|- ( ( 9 e. CC /\ A e. CC ) -> ( 9 x. A ) e. CC ) |
53 |
51 1 52
|
sylancr |
|- ( ph -> ( 9 x. A ) e. CC ) |
54 |
3 4
|
mulcld |
|- ( ph -> ( B x. C ) e. CC ) |
55 |
53 54
|
mulcld |
|- ( ph -> ( ( 9 x. A ) x. ( B x. C ) ) e. CC ) |
56 |
50 55
|
subcld |
|- ( ph -> ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) e. CC ) |
57 |
|
2nn0 |
|- 2 e. NN0 |
58 |
|
7nn |
|- 7 e. NN |
59 |
57 58
|
decnncl |
|- ; 2 7 e. NN |
60 |
59
|
nncni |
|- ; 2 7 e. CC |
61 |
1
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
62 |
61 5
|
mulcld |
|- ( ph -> ( ( A ^ 2 ) x. D ) e. CC ) |
63 |
|
mulcl |
|- ( ( ; 2 7 e. CC /\ ( ( A ^ 2 ) x. D ) e. CC ) -> ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) e. CC ) |
64 |
60 62 63
|
sylancr |
|- ( ph -> ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) e. CC ) |
65 |
56 64
|
addcld |
|- ( ph -> ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) + ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) ) e. CC ) |
66 |
12 65
|
eqeltrd |
|- ( ph -> N e. CC ) |
67 |
66 9
|
addcld |
|- ( ph -> ( N + G ) e. CC ) |
68 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
69 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
70 |
1 14 69
|
sylancl |
|- ( ph -> ( A ^ 3 ) e. CC ) |
71 |
|
2ne0 |
|- 2 =/= 0 |
72 |
71
|
a1i |
|- ( ph -> 2 =/= 0 ) |
73 |
|
3z |
|- 3 e. ZZ |
74 |
73
|
a1i |
|- ( ph -> 3 e. ZZ ) |
75 |
1 2 74
|
expne0d |
|- ( ph -> ( A ^ 3 ) =/= 0 ) |
76 |
67 68 70 72 75
|
divdiv32d |
|- ( ph -> ( ( ( N + G ) / 2 ) / ( A ^ 3 ) ) = ( ( ( N + G ) / ( A ^ 3 ) ) / 2 ) ) |
77 |
66 9 70 75
|
divdird |
|- ( ph -> ( ( N + G ) / ( A ^ 3 ) ) = ( ( N / ( A ^ 3 ) ) + ( G / ( A ^ 3 ) ) ) ) |
78 |
77
|
oveq1d |
|- ( ph -> ( ( ( N + G ) / ( A ^ 3 ) ) / 2 ) = ( ( ( N / ( A ^ 3 ) ) + ( G / ( A ^ 3 ) ) ) / 2 ) ) |
79 |
76 78
|
eqtrd |
|- ( ph -> ( ( ( N + G ) / 2 ) / ( A ^ 3 ) ) = ( ( ( N / ( A ^ 3 ) ) + ( G / ( A ^ 3 ) ) ) / 2 ) ) |
80 |
44 45 79
|
3eqtrd |
|- ( ph -> ( ( T / A ) ^ 3 ) = ( ( ( N / ( A ^ 3 ) ) + ( G / ( A ^ 3 ) ) ) / 2 ) ) |
81 |
9 70 75
|
divcld |
|- ( ph -> ( G / ( A ^ 3 ) ) e. CC ) |
82 |
9 70 75
|
sqdivd |
|- ( ph -> ( ( G / ( A ^ 3 ) ) ^ 2 ) = ( ( G ^ 2 ) / ( ( A ^ 3 ) ^ 2 ) ) ) |
83 |
10
|
oveq1d |
|- ( ph -> ( ( G ^ 2 ) / ( ( A ^ 3 ) ^ 2 ) ) = ( ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) / ( ( A ^ 3 ) ^ 2 ) ) ) |
84 |
66
|
sqcld |
|- ( ph -> ( N ^ 2 ) e. CC ) |
85 |
|
4cn |
|- 4 e. CC |
86 |
3
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
87 |
|
3cn |
|- 3 e. CC |
88 |
1 4
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
89 |
|
mulcl |
|- ( ( 3 e. CC /\ ( A x. C ) e. CC ) -> ( 3 x. ( A x. C ) ) e. CC ) |
90 |
87 88 89
|
sylancr |
|- ( ph -> ( 3 x. ( A x. C ) ) e. CC ) |
91 |
86 90
|
subcld |
|- ( ph -> ( ( B ^ 2 ) - ( 3 x. ( A x. C ) ) ) e. CC ) |
92 |
11 91
|
eqeltrd |
|- ( ph -> M e. CC ) |
93 |
|
expcl |
|- ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) |
94 |
92 14 93
|
sylancl |
|- ( ph -> ( M ^ 3 ) e. CC ) |
95 |
|
mulcl |
|- ( ( 4 e. CC /\ ( M ^ 3 ) e. CC ) -> ( 4 x. ( M ^ 3 ) ) e. CC ) |
96 |
85 94 95
|
sylancr |
|- ( ph -> ( 4 x. ( M ^ 3 ) ) e. CC ) |
97 |
70
|
sqcld |
|- ( ph -> ( ( A ^ 3 ) ^ 2 ) e. CC ) |
98 |
|
sqne0 |
|- ( ( A ^ 3 ) e. CC -> ( ( ( A ^ 3 ) ^ 2 ) =/= 0 <-> ( A ^ 3 ) =/= 0 ) ) |
99 |
70 98
|
syl |
|- ( ph -> ( ( ( A ^ 3 ) ^ 2 ) =/= 0 <-> ( A ^ 3 ) =/= 0 ) ) |
100 |
75 99
|
mpbird |
|- ( ph -> ( ( A ^ 3 ) ^ 2 ) =/= 0 ) |
101 |
84 96 97 100
|
divsubdird |
|- ( ph -> ( ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) / ( ( A ^ 3 ) ^ 2 ) ) = ( ( ( N ^ 2 ) / ( ( A ^ 3 ) ^ 2 ) ) - ( ( 4 x. ( M ^ 3 ) ) / ( ( A ^ 3 ) ^ 2 ) ) ) ) |
102 |
66 70 75
|
sqdivd |
|- ( ph -> ( ( N / ( A ^ 3 ) ) ^ 2 ) = ( ( N ^ 2 ) / ( ( A ^ 3 ) ^ 2 ) ) ) |
103 |
|
2z |
|- 2 e. ZZ |
104 |
103
|
a1i |
|- ( ph -> 2 e. ZZ ) |
105 |
1 2 104
|
expne0d |
|- ( ph -> ( A ^ 2 ) =/= 0 ) |
106 |
92 61 105 43
|
expdivd |
|- ( ph -> ( ( M / ( A ^ 2 ) ) ^ 3 ) = ( ( M ^ 3 ) / ( ( A ^ 2 ) ^ 3 ) ) ) |
107 |
46 87
|
mulcomi |
|- ( 2 x. 3 ) = ( 3 x. 2 ) |
108 |
107
|
oveq2i |
|- ( A ^ ( 2 x. 3 ) ) = ( A ^ ( 3 x. 2 ) ) |
109 |
57
|
a1i |
|- ( ph -> 2 e. NN0 ) |
110 |
1 43 109
|
expmuld |
|- ( ph -> ( A ^ ( 2 x. 3 ) ) = ( ( A ^ 2 ) ^ 3 ) ) |
111 |
1 109 43
|
expmuld |
|- ( ph -> ( A ^ ( 3 x. 2 ) ) = ( ( A ^ 3 ) ^ 2 ) ) |
112 |
108 110 111
|
3eqtr3a |
|- ( ph -> ( ( A ^ 2 ) ^ 3 ) = ( ( A ^ 3 ) ^ 2 ) ) |
113 |
112
|
oveq2d |
|- ( ph -> ( ( M ^ 3 ) / ( ( A ^ 2 ) ^ 3 ) ) = ( ( M ^ 3 ) / ( ( A ^ 3 ) ^ 2 ) ) ) |
114 |
106 113
|
eqtrd |
|- ( ph -> ( ( M / ( A ^ 2 ) ) ^ 3 ) = ( ( M ^ 3 ) / ( ( A ^ 3 ) ^ 2 ) ) ) |
115 |
114
|
oveq2d |
|- ( ph -> ( 4 x. ( ( M / ( A ^ 2 ) ) ^ 3 ) ) = ( 4 x. ( ( M ^ 3 ) / ( ( A ^ 3 ) ^ 2 ) ) ) ) |
116 |
85
|
a1i |
|- ( ph -> 4 e. CC ) |
117 |
116 94 97 100
|
divassd |
|- ( ph -> ( ( 4 x. ( M ^ 3 ) ) / ( ( A ^ 3 ) ^ 2 ) ) = ( 4 x. ( ( M ^ 3 ) / ( ( A ^ 3 ) ^ 2 ) ) ) ) |
118 |
115 117
|
eqtr4d |
|- ( ph -> ( 4 x. ( ( M / ( A ^ 2 ) ) ^ 3 ) ) = ( ( 4 x. ( M ^ 3 ) ) / ( ( A ^ 3 ) ^ 2 ) ) ) |
119 |
102 118
|
oveq12d |
|- ( ph -> ( ( ( N / ( A ^ 3 ) ) ^ 2 ) - ( 4 x. ( ( M / ( A ^ 2 ) ) ^ 3 ) ) ) = ( ( ( N ^ 2 ) / ( ( A ^ 3 ) ^ 2 ) ) - ( ( 4 x. ( M ^ 3 ) ) / ( ( A ^ 3 ) ^ 2 ) ) ) ) |
120 |
101 119
|
eqtr4d |
|- ( ph -> ( ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) / ( ( A ^ 3 ) ^ 2 ) ) = ( ( ( N / ( A ^ 3 ) ) ^ 2 ) - ( 4 x. ( ( M / ( A ^ 2 ) ) ^ 3 ) ) ) ) |
121 |
82 83 120
|
3eqtrd |
|- ( ph -> ( ( G / ( A ^ 3 ) ) ^ 2 ) = ( ( ( N / ( A ^ 3 ) ) ^ 2 ) - ( 4 x. ( ( M / ( A ^ 2 ) ) ^ 3 ) ) ) ) |
122 |
86 90 61 105
|
divsubdird |
|- ( ph -> ( ( ( B ^ 2 ) - ( 3 x. ( A x. C ) ) ) / ( A ^ 2 ) ) = ( ( ( B ^ 2 ) / ( A ^ 2 ) ) - ( ( 3 x. ( A x. C ) ) / ( A ^ 2 ) ) ) ) |
123 |
11
|
oveq1d |
|- ( ph -> ( M / ( A ^ 2 ) ) = ( ( ( B ^ 2 ) - ( 3 x. ( A x. C ) ) ) / ( A ^ 2 ) ) ) |
124 |
3 1 2
|
sqdivd |
|- ( ph -> ( ( B / A ) ^ 2 ) = ( ( B ^ 2 ) / ( A ^ 2 ) ) ) |
125 |
1
|
sqvald |
|- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
126 |
125
|
oveq2d |
|- ( ph -> ( ( A x. C ) / ( A ^ 2 ) ) = ( ( A x. C ) / ( A x. A ) ) ) |
127 |
4 1 1 2 2
|
divcan5d |
|- ( ph -> ( ( A x. C ) / ( A x. A ) ) = ( C / A ) ) |
128 |
126 127
|
eqtr2d |
|- ( ph -> ( C / A ) = ( ( A x. C ) / ( A ^ 2 ) ) ) |
129 |
128
|
oveq2d |
|- ( ph -> ( 3 x. ( C / A ) ) = ( 3 x. ( ( A x. C ) / ( A ^ 2 ) ) ) ) |
130 |
87
|
a1i |
|- ( ph -> 3 e. CC ) |
131 |
130 88 61 105
|
divassd |
|- ( ph -> ( ( 3 x. ( A x. C ) ) / ( A ^ 2 ) ) = ( 3 x. ( ( A x. C ) / ( A ^ 2 ) ) ) ) |
132 |
129 131
|
eqtr4d |
|- ( ph -> ( 3 x. ( C / A ) ) = ( ( 3 x. ( A x. C ) ) / ( A ^ 2 ) ) ) |
133 |
124 132
|
oveq12d |
|- ( ph -> ( ( ( B / A ) ^ 2 ) - ( 3 x. ( C / A ) ) ) = ( ( ( B ^ 2 ) / ( A ^ 2 ) ) - ( ( 3 x. ( A x. C ) ) / ( A ^ 2 ) ) ) ) |
134 |
122 123 133
|
3eqtr4d |
|- ( ph -> ( M / ( A ^ 2 ) ) = ( ( ( B / A ) ^ 2 ) - ( 3 x. ( C / A ) ) ) ) |
135 |
56 64 70 75
|
divdird |
|- ( ph -> ( ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) + ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) ) / ( A ^ 3 ) ) = ( ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) / ( A ^ 3 ) ) + ( ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) / ( A ^ 3 ) ) ) ) |
136 |
12
|
oveq1d |
|- ( ph -> ( N / ( A ^ 3 ) ) = ( ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) + ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) ) / ( A ^ 3 ) ) ) |
137 |
3 1 2 43
|
expdivd |
|- ( ph -> ( ( B / A ) ^ 3 ) = ( ( B ^ 3 ) / ( A ^ 3 ) ) ) |
138 |
137
|
oveq2d |
|- ( ph -> ( 2 x. ( ( B / A ) ^ 3 ) ) = ( 2 x. ( ( B ^ 3 ) / ( A ^ 3 ) ) ) ) |
139 |
68 48 70 75
|
divassd |
|- ( ph -> ( ( 2 x. ( B ^ 3 ) ) / ( A ^ 3 ) ) = ( 2 x. ( ( B ^ 3 ) / ( A ^ 3 ) ) ) ) |
140 |
138 139
|
eqtr4d |
|- ( ph -> ( 2 x. ( ( B / A ) ^ 3 ) ) = ( ( 2 x. ( B ^ 3 ) ) / ( A ^ 3 ) ) ) |
141 |
51
|
a1i |
|- ( ph -> 9 e. CC ) |
142 |
1 54
|
mulcld |
|- ( ph -> ( A x. ( B x. C ) ) e. CC ) |
143 |
141 142 70 75
|
divassd |
|- ( ph -> ( ( 9 x. ( A x. ( B x. C ) ) ) / ( A ^ 3 ) ) = ( 9 x. ( ( A x. ( B x. C ) ) / ( A ^ 3 ) ) ) ) |
144 |
141 1 54
|
mulassd |
|- ( ph -> ( ( 9 x. A ) x. ( B x. C ) ) = ( 9 x. ( A x. ( B x. C ) ) ) ) |
145 |
144
|
oveq1d |
|- ( ph -> ( ( ( 9 x. A ) x. ( B x. C ) ) / ( A ^ 3 ) ) = ( ( 9 x. ( A x. ( B x. C ) ) ) / ( A ^ 3 ) ) ) |
146 |
54 61 1 105 2
|
divcan5d |
|- ( ph -> ( ( A x. ( B x. C ) ) / ( A x. ( A ^ 2 ) ) ) = ( ( B x. C ) / ( A ^ 2 ) ) ) |
147 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
148 |
147
|
oveq2i |
|- ( A ^ 3 ) = ( A ^ ( 2 + 1 ) ) |
149 |
|
expp1 |
|- ( ( A e. CC /\ 2 e. NN0 ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) |
150 |
1 57 149
|
sylancl |
|- ( ph -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) |
151 |
148 150
|
eqtrid |
|- ( ph -> ( A ^ 3 ) = ( ( A ^ 2 ) x. A ) ) |
152 |
61 1
|
mulcomd |
|- ( ph -> ( ( A ^ 2 ) x. A ) = ( A x. ( A ^ 2 ) ) ) |
153 |
151 152
|
eqtrd |
|- ( ph -> ( A ^ 3 ) = ( A x. ( A ^ 2 ) ) ) |
154 |
153
|
oveq2d |
|- ( ph -> ( ( A x. ( B x. C ) ) / ( A ^ 3 ) ) = ( ( A x. ( B x. C ) ) / ( A x. ( A ^ 2 ) ) ) ) |
155 |
3 1 4 1 2 2
|
divmuldivd |
|- ( ph -> ( ( B / A ) x. ( C / A ) ) = ( ( B x. C ) / ( A x. A ) ) ) |
156 |
125
|
oveq2d |
|- ( ph -> ( ( B x. C ) / ( A ^ 2 ) ) = ( ( B x. C ) / ( A x. A ) ) ) |
157 |
155 156
|
eqtr4d |
|- ( ph -> ( ( B / A ) x. ( C / A ) ) = ( ( B x. C ) / ( A ^ 2 ) ) ) |
158 |
146 154 157
|
3eqtr4rd |
|- ( ph -> ( ( B / A ) x. ( C / A ) ) = ( ( A x. ( B x. C ) ) / ( A ^ 3 ) ) ) |
159 |
158
|
oveq2d |
|- ( ph -> ( 9 x. ( ( B / A ) x. ( C / A ) ) ) = ( 9 x. ( ( A x. ( B x. C ) ) / ( A ^ 3 ) ) ) ) |
160 |
143 145 159
|
3eqtr4rd |
|- ( ph -> ( 9 x. ( ( B / A ) x. ( C / A ) ) ) = ( ( ( 9 x. A ) x. ( B x. C ) ) / ( A ^ 3 ) ) ) |
161 |
140 160
|
oveq12d |
|- ( ph -> ( ( 2 x. ( ( B / A ) ^ 3 ) ) - ( 9 x. ( ( B / A ) x. ( C / A ) ) ) ) = ( ( ( 2 x. ( B ^ 3 ) ) / ( A ^ 3 ) ) - ( ( ( 9 x. A ) x. ( B x. C ) ) / ( A ^ 3 ) ) ) ) |
162 |
50 55 70 75
|
divsubdird |
|- ( ph -> ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) / ( A ^ 3 ) ) = ( ( ( 2 x. ( B ^ 3 ) ) / ( A ^ 3 ) ) - ( ( ( 9 x. A ) x. ( B x. C ) ) / ( A ^ 3 ) ) ) ) |
163 |
161 162
|
eqtr4d |
|- ( ph -> ( ( 2 x. ( ( B / A ) ^ 3 ) ) - ( 9 x. ( ( B / A ) x. ( C / A ) ) ) ) = ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) / ( A ^ 3 ) ) ) |
164 |
151
|
oveq2d |
|- ( ph -> ( ( ( A ^ 2 ) x. D ) / ( A ^ 3 ) ) = ( ( ( A ^ 2 ) x. D ) / ( ( A ^ 2 ) x. A ) ) ) |
165 |
5 1 61 2 105
|
divcan5d |
|- ( ph -> ( ( ( A ^ 2 ) x. D ) / ( ( A ^ 2 ) x. A ) ) = ( D / A ) ) |
166 |
164 165
|
eqtr2d |
|- ( ph -> ( D / A ) = ( ( ( A ^ 2 ) x. D ) / ( A ^ 3 ) ) ) |
167 |
166
|
oveq2d |
|- ( ph -> ( ; 2 7 x. ( D / A ) ) = ( ; 2 7 x. ( ( ( A ^ 2 ) x. D ) / ( A ^ 3 ) ) ) ) |
168 |
60
|
a1i |
|- ( ph -> ; 2 7 e. CC ) |
169 |
168 62 70 75
|
divassd |
|- ( ph -> ( ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) / ( A ^ 3 ) ) = ( ; 2 7 x. ( ( ( A ^ 2 ) x. D ) / ( A ^ 3 ) ) ) ) |
170 |
167 169
|
eqtr4d |
|- ( ph -> ( ; 2 7 x. ( D / A ) ) = ( ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) / ( A ^ 3 ) ) ) |
171 |
163 170
|
oveq12d |
|- ( ph -> ( ( ( 2 x. ( ( B / A ) ^ 3 ) ) - ( 9 x. ( ( B / A ) x. ( C / A ) ) ) ) + ( ; 2 7 x. ( D / A ) ) ) = ( ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) / ( A ^ 3 ) ) + ( ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) / ( A ^ 3 ) ) ) ) |
172 |
135 136 171
|
3eqtr4d |
|- ( ph -> ( N / ( A ^ 3 ) ) = ( ( ( 2 x. ( ( B / A ) ^ 3 ) ) - ( 9 x. ( ( B / A ) x. ( C / A ) ) ) ) + ( ; 2 7 x. ( D / A ) ) ) ) |
173 |
7 1 13 2
|
divne0d |
|- ( ph -> ( T / A ) =/= 0 ) |
174 |
39 40 41 6 42 80 81 121 134 172 173
|
mcubic |
|- ( ph -> ( ( ( ( X ^ 3 ) + ( ( B / A ) x. ( X ^ 2 ) ) ) + ( ( ( C / A ) x. X ) + ( D / A ) ) ) = 0 <-> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) ) ) ) |
175 |
|
oveq1 |
|- ( r = 0 -> ( r ^ 3 ) = ( 0 ^ 3 ) ) |
176 |
|
3nn |
|- 3 e. NN |
177 |
|
0exp |
|- ( 3 e. NN -> ( 0 ^ 3 ) = 0 ) |
178 |
176 177
|
ax-mp |
|- ( 0 ^ 3 ) = 0 |
179 |
175 178
|
eqtrdi |
|- ( r = 0 -> ( r ^ 3 ) = 0 ) |
180 |
|
0ne1 |
|- 0 =/= 1 |
181 |
180
|
a1i |
|- ( r = 0 -> 0 =/= 1 ) |
182 |
179 181
|
eqnetrd |
|- ( r = 0 -> ( r ^ 3 ) =/= 1 ) |
183 |
182
|
necon2i |
|- ( ( r ^ 3 ) = 1 -> r =/= 0 ) |
184 |
|
simprl |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> r e. CC ) |
185 |
7
|
adantr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> T e. CC ) |
186 |
1
|
adantr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> A e. CC ) |
187 |
2
|
adantr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> A =/= 0 ) |
188 |
184 185 186 187
|
divassd |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( r x. T ) / A ) = ( r x. ( T / A ) ) ) |
189 |
188
|
eqcomd |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( r x. ( T / A ) ) = ( ( r x. T ) / A ) ) |
190 |
189
|
oveq2d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( B / A ) + ( r x. ( T / A ) ) ) = ( ( B / A ) + ( ( r x. T ) / A ) ) ) |
191 |
3
|
adantr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> B e. CC ) |
192 |
184 185
|
mulcld |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( r x. T ) e. CC ) |
193 |
191 192 186 187
|
divdird |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( B + ( r x. T ) ) / A ) = ( ( B / A ) + ( ( r x. T ) / A ) ) ) |
194 |
190 193
|
eqtr4d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( B / A ) + ( r x. ( T / A ) ) ) = ( ( B + ( r x. T ) ) / A ) ) |
195 |
92
|
adantr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> M e. CC ) |
196 |
195 186 187
|
divcld |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( M / A ) e. CC ) |
197 |
|
simprr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> r =/= 0 ) |
198 |
13
|
adantr |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> T =/= 0 ) |
199 |
184 185 197 198
|
mulne0d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( r x. T ) =/= 0 ) |
200 |
196 192 186 199 187
|
divcan7d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( M / A ) / A ) / ( ( r x. T ) / A ) ) = ( ( M / A ) / ( r x. T ) ) ) |
201 |
195 186 186 187 187
|
divdiv1d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( M / A ) / A ) = ( M / ( A x. A ) ) ) |
202 |
186
|
sqvald |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( A ^ 2 ) = ( A x. A ) ) |
203 |
202
|
oveq2d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( M / ( A ^ 2 ) ) = ( M / ( A x. A ) ) ) |
204 |
201 203
|
eqtr4d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( M / A ) / A ) = ( M / ( A ^ 2 ) ) ) |
205 |
204 188
|
oveq12d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( M / A ) / A ) / ( ( r x. T ) / A ) ) = ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) |
206 |
195 186 192 187 199
|
divdiv32d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( M / A ) / ( r x. T ) ) = ( ( M / ( r x. T ) ) / A ) ) |
207 |
200 205 206
|
3eqtr3d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) = ( ( M / ( r x. T ) ) / A ) ) |
208 |
194 207
|
oveq12d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) = ( ( ( B + ( r x. T ) ) / A ) + ( ( M / ( r x. T ) ) / A ) ) ) |
209 |
191 192
|
addcld |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( B + ( r x. T ) ) e. CC ) |
210 |
195 192 199
|
divcld |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( M / ( r x. T ) ) e. CC ) |
211 |
209 210 186 187
|
divdird |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / A ) = ( ( ( B + ( r x. T ) ) / A ) + ( ( M / ( r x. T ) ) / A ) ) ) |
212 |
208 211
|
eqtr4d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) = ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / A ) ) |
213 |
212
|
oveq1d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) = ( ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / A ) / 3 ) ) |
214 |
209 210
|
addcld |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) e. CC ) |
215 |
87
|
a1i |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> 3 e. CC ) |
216 |
|
3ne0 |
|- 3 =/= 0 |
217 |
216
|
a1i |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> 3 =/= 0 ) |
218 |
214 186 215 187 217
|
divdiv1d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / A ) / 3 ) = ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( A x. 3 ) ) ) |
219 |
|
mulcom |
|- ( ( A e. CC /\ 3 e. CC ) -> ( A x. 3 ) = ( 3 x. A ) ) |
220 |
186 87 219
|
sylancl |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( A x. 3 ) = ( 3 x. A ) ) |
221 |
220
|
oveq2d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( A x. 3 ) ) = ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) |
222 |
213 218 221
|
3eqtrd |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) = ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) |
223 |
222
|
negeqd |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) |
224 |
223
|
eqeq2d |
|- ( ( ph /\ ( r e. CC /\ r =/= 0 ) ) -> ( X = -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) <-> X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) |
225 |
224
|
anassrs |
|- ( ( ( ph /\ r e. CC ) /\ r =/= 0 ) -> ( X = -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) <-> X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) |
226 |
183 225
|
sylan2 |
|- ( ( ( ph /\ r e. CC ) /\ ( r ^ 3 ) = 1 ) -> ( X = -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) <-> X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) |
227 |
226
|
pm5.32da |
|- ( ( ph /\ r e. CC ) -> ( ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) ) <-> ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) ) |
228 |
227
|
rexbidva |
|- ( ph -> ( E. r e. CC ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( ( B / A ) + ( r x. ( T / A ) ) ) + ( ( M / ( A ^ 2 ) ) / ( r x. ( T / A ) ) ) ) / 3 ) ) <-> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) ) |
229 |
38 174 228
|
3bitrd |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) ) |