| Step | Hyp | Ref | Expression | 
						
							| 1 |  | curry1.1 |  |-  G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) | 
						
							| 2 | 1 | curry1 |  |-  ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) | 
						
							| 3 | 2 | fveq1d |  |-  ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( ( x e. B |-> ( C F x ) ) ` D ) ) | 
						
							| 4 |  | eqid |  |-  ( x e. B |-> ( C F x ) ) = ( x e. B |-> ( C F x ) ) | 
						
							| 5 | 4 | fvmptndm |  |-  ( -. D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = (/) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = (/) ) | 
						
							| 7 |  | fndm |  |-  ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( F Fn ( A X. B ) /\ C e. A ) -> dom F = ( A X. B ) ) | 
						
							| 9 |  | simpr |  |-  ( ( C e. A /\ D e. B ) -> D e. B ) | 
						
							| 10 | 9 | con3i |  |-  ( -. D e. B -> -. ( C e. A /\ D e. B ) ) | 
						
							| 11 |  | ndmovg |  |-  ( ( dom F = ( A X. B ) /\ -. ( C e. A /\ D e. B ) ) -> ( C F D ) = (/) ) | 
						
							| 12 | 8 10 11 | syl2an |  |-  ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( C F D ) = (/) ) | 
						
							| 13 | 6 12 | eqtr4d |  |-  ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) | 
						
							| 14 | 13 | ex |  |-  ( ( F Fn ( A X. B ) /\ C e. A ) -> ( -. D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( x = D -> ( C F x ) = ( C F D ) ) | 
						
							| 16 |  | ovex |  |-  ( C F D ) e. _V | 
						
							| 17 | 15 4 16 | fvmpt |  |-  ( D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) | 
						
							| 18 | 14 17 | pm2.61d2 |  |-  ( ( F Fn ( A X. B ) /\ C e. A ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) | 
						
							| 19 | 3 18 | eqtrd |  |-  ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( C F D ) ) |