| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curry1.1 |
|- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
| 2 |
1
|
curry1 |
|- ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) |
| 3 |
2
|
fveq1d |
|- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( ( x e. B |-> ( C F x ) ) ` D ) ) |
| 4 |
|
eqid |
|- ( x e. B |-> ( C F x ) ) = ( x e. B |-> ( C F x ) ) |
| 5 |
4
|
fvmptndm |
|- ( -. D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = (/) ) |
| 6 |
5
|
adantl |
|- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = (/) ) |
| 7 |
|
fndm |
|- ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) |
| 8 |
7
|
adantr |
|- ( ( F Fn ( A X. B ) /\ C e. A ) -> dom F = ( A X. B ) ) |
| 9 |
|
simpr |
|- ( ( C e. A /\ D e. B ) -> D e. B ) |
| 10 |
9
|
con3i |
|- ( -. D e. B -> -. ( C e. A /\ D e. B ) ) |
| 11 |
|
ndmovg |
|- ( ( dom F = ( A X. B ) /\ -. ( C e. A /\ D e. B ) ) -> ( C F D ) = (/) ) |
| 12 |
8 10 11
|
syl2an |
|- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( C F D ) = (/) ) |
| 13 |
6 12
|
eqtr4d |
|- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) |
| 14 |
13
|
ex |
|- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( -. D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) ) |
| 15 |
|
oveq2 |
|- ( x = D -> ( C F x ) = ( C F D ) ) |
| 16 |
|
ovex |
|- ( C F D ) e. _V |
| 17 |
15 4 16
|
fvmpt |
|- ( D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) |
| 18 |
14 17
|
pm2.61d2 |
|- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) |
| 19 |
3 18
|
eqtrd |
|- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( C F D ) ) |