| Step | Hyp | Ref | Expression | 
						
							| 1 |  | curry2.1 |  |-  G = ( F o. `' ( 1st |` ( _V X. { C } ) ) ) | 
						
							| 2 |  | fnfun |  |-  ( F Fn ( A X. B ) -> Fun F ) | 
						
							| 3 |  | 1stconst |  |-  ( C e. B -> ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V ) | 
						
							| 4 |  | dff1o3 |  |-  ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V <-> ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -onto-> _V /\ Fun `' ( 1st |` ( _V X. { C } ) ) ) ) | 
						
							| 5 | 4 | simprbi |  |-  ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V -> Fun `' ( 1st |` ( _V X. { C } ) ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( C e. B -> Fun `' ( 1st |` ( _V X. { C } ) ) ) | 
						
							| 7 |  | funco |  |-  ( ( Fun F /\ Fun `' ( 1st |` ( _V X. { C } ) ) ) -> Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ) | 
						
							| 8 | 2 6 7 | syl2an |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ) | 
						
							| 9 |  | dmco |  |-  dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) | 
						
							| 10 |  | fndm |  |-  ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> dom F = ( A X. B ) ) | 
						
							| 12 | 11 | imaeq2d |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) = ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) ) | 
						
							| 13 |  | imacnvcnv |  |-  ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ( ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) | 
						
							| 14 |  | df-ima |  |-  ( ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ran ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) | 
						
							| 15 |  | resres |  |-  ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) = ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) | 
						
							| 16 | 15 | rneqi |  |-  ran ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) = ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) | 
						
							| 17 | 13 14 16 | 3eqtri |  |-  ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) | 
						
							| 18 |  | inxp |  |-  ( ( _V X. { C } ) i^i ( A X. B ) ) = ( ( _V i^i A ) X. ( { C } i^i B ) ) | 
						
							| 19 |  | incom |  |-  ( _V i^i A ) = ( A i^i _V ) | 
						
							| 20 |  | inv1 |  |-  ( A i^i _V ) = A | 
						
							| 21 | 19 20 | eqtri |  |-  ( _V i^i A ) = A | 
						
							| 22 | 21 | xpeq1i |  |-  ( ( _V i^i A ) X. ( { C } i^i B ) ) = ( A X. ( { C } i^i B ) ) | 
						
							| 23 | 18 22 | eqtri |  |-  ( ( _V X. { C } ) i^i ( A X. B ) ) = ( A X. ( { C } i^i B ) ) | 
						
							| 24 |  | snssi |  |-  ( C e. B -> { C } C_ B ) | 
						
							| 25 |  | dfss2 |  |-  ( { C } C_ B <-> ( { C } i^i B ) = { C } ) | 
						
							| 26 | 24 25 | sylib |  |-  ( C e. B -> ( { C } i^i B ) = { C } ) | 
						
							| 27 | 26 | xpeq2d |  |-  ( C e. B -> ( A X. ( { C } i^i B ) ) = ( A X. { C } ) ) | 
						
							| 28 | 23 27 | eqtrid |  |-  ( C e. B -> ( ( _V X. { C } ) i^i ( A X. B ) ) = ( A X. { C } ) ) | 
						
							| 29 | 28 | reseq2d |  |-  ( C e. B -> ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = ( 1st |` ( A X. { C } ) ) ) | 
						
							| 30 | 29 | rneqd |  |-  ( C e. B -> ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = ran ( 1st |` ( A X. { C } ) ) ) | 
						
							| 31 |  | 1stconst |  |-  ( C e. B -> ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -1-1-onto-> A ) | 
						
							| 32 |  | f1ofo |  |-  ( ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -1-1-onto-> A -> ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -onto-> A ) | 
						
							| 33 |  | forn |  |-  ( ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -onto-> A -> ran ( 1st |` ( A X. { C } ) ) = A ) | 
						
							| 34 | 31 32 33 | 3syl |  |-  ( C e. B -> ran ( 1st |` ( A X. { C } ) ) = A ) | 
						
							| 35 | 30 34 | eqtrd |  |-  ( C e. B -> ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = A ) | 
						
							| 36 | 17 35 | eqtrid |  |-  ( C e. B -> ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = A ) | 
						
							| 37 | 36 | adantl |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = A ) | 
						
							| 38 | 12 37 | eqtrd |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) = A ) | 
						
							| 39 | 9 38 | eqtrid |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) | 
						
							| 40 | 1 | fneq1i |  |-  ( G Fn A <-> ( F o. `' ( 1st |` ( _V X. { C } ) ) ) Fn A ) | 
						
							| 41 |  | df-fn |  |-  ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) Fn A <-> ( Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) /\ dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) ) | 
						
							| 42 | 40 41 | bitri |  |-  ( G Fn A <-> ( Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) /\ dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) ) | 
						
							| 43 | 8 39 42 | sylanbrc |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> G Fn A ) | 
						
							| 44 |  | dffn5 |  |-  ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) | 
						
							| 45 | 43 44 | sylib |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( G ` x ) ) ) | 
						
							| 46 | 1 | fveq1i |  |-  ( G ` x ) = ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) | 
						
							| 47 |  | dff1o4 |  |-  ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V <-> ( ( 1st |` ( _V X. { C } ) ) Fn ( _V X. { C } ) /\ `' ( 1st |` ( _V X. { C } ) ) Fn _V ) ) | 
						
							| 48 | 3 47 | sylib |  |-  ( C e. B -> ( ( 1st |` ( _V X. { C } ) ) Fn ( _V X. { C } ) /\ `' ( 1st |` ( _V X. { C } ) ) Fn _V ) ) | 
						
							| 49 | 48 | simprd |  |-  ( C e. B -> `' ( 1st |` ( _V X. { C } ) ) Fn _V ) | 
						
							| 50 |  | vex |  |-  x e. _V | 
						
							| 51 |  | fvco2 |  |-  ( ( `' ( 1st |` ( _V X. { C } ) ) Fn _V /\ x e. _V ) -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) | 
						
							| 52 | 49 50 51 | sylancl |  |-  ( C e. B -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) | 
						
							| 53 | 52 | ad2antlr |  |-  ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) | 
						
							| 54 | 46 53 | eqtrid |  |-  ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( G ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) | 
						
							| 55 | 3 | adantr |  |-  ( ( C e. B /\ x e. A ) -> ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V ) | 
						
							| 56 | 50 | a1i |  |-  ( ( C e. B /\ x e. A ) -> x e. _V ) | 
						
							| 57 |  | snidg |  |-  ( C e. B -> C e. { C } ) | 
						
							| 58 | 57 | adantr |  |-  ( ( C e. B /\ x e. A ) -> C e. { C } ) | 
						
							| 59 | 56 58 | opelxpd |  |-  ( ( C e. B /\ x e. A ) -> <. x , C >. e. ( _V X. { C } ) ) | 
						
							| 60 | 55 59 | jca |  |-  ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V /\ <. x , C >. e. ( _V X. { C } ) ) ) | 
						
							| 61 | 50 | a1i |  |-  ( C e. B -> x e. _V ) | 
						
							| 62 | 61 57 | opelxpd |  |-  ( C e. B -> <. x , C >. e. ( _V X. { C } ) ) | 
						
							| 63 | 62 | fvresd |  |-  ( C e. B -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = ( 1st ` <. x , C >. ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = ( 1st ` <. x , C >. ) ) | 
						
							| 65 |  | op1stg |  |-  ( ( x e. A /\ C e. B ) -> ( 1st ` <. x , C >. ) = x ) | 
						
							| 66 | 65 | ancoms |  |-  ( ( C e. B /\ x e. A ) -> ( 1st ` <. x , C >. ) = x ) | 
						
							| 67 | 64 66 | eqtrd |  |-  ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = x ) | 
						
							| 68 |  | f1ocnvfv |  |-  ( ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V /\ <. x , C >. e. ( _V X. { C } ) ) -> ( ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = x -> ( `' ( 1st |` ( _V X. { C } ) ) ` x ) = <. x , C >. ) ) | 
						
							| 69 | 60 67 68 | sylc |  |-  ( ( C e. B /\ x e. A ) -> ( `' ( 1st |` ( _V X. { C } ) ) ` x ) = <. x , C >. ) | 
						
							| 70 | 69 | fveq2d |  |-  ( ( C e. B /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( F ` <. x , C >. ) ) | 
						
							| 71 | 70 | adantll |  |-  ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( F ` <. x , C >. ) ) | 
						
							| 72 |  | df-ov |  |-  ( x F C ) = ( F ` <. x , C >. ) | 
						
							| 73 | 71 72 | eqtr4di |  |-  ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( x F C ) ) | 
						
							| 74 | 54 73 | eqtrd |  |-  ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( G ` x ) = ( x F C ) ) | 
						
							| 75 | 74 | mpteq2dva |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> ( x e. A |-> ( G ` x ) ) = ( x e. A |-> ( x F C ) ) ) | 
						
							| 76 | 45 75 | eqtrd |  |-  ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( x F C ) ) ) |