| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cplgr0v.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1i | 
							 |-  ( V = (/) <-> ( Vtx ` G ) = (/) )  | 
						
						
							| 3 | 
							
								
							 | 
							usgr0v | 
							 |-  ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl3an2b | 
							 |-  ( ( G e. W /\ V = (/) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph )  | 
						
						
							| 5 | 
							
								1
							 | 
							cplgr0v | 
							 |-  ( ( G e. W /\ V = (/) ) -> G e. ComplGraph )  | 
						
						
							| 6 | 
							
								5
							 | 
							3adant3 | 
							 |-  ( ( G e. W /\ V = (/) /\ ( iEdg ` G ) = (/) ) -> G e. ComplGraph )  | 
						
						
							| 7 | 
							
								
							 | 
							iscusgr | 
							 |-  ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							 |-  ( ( G e. W /\ V = (/) /\ ( iEdg ` G ) = (/) ) -> G e. ComplUSGraph )  |