Step |
Hyp |
Ref |
Expression |
1 |
|
cplgr0v.v |
|- V = ( Vtx ` G ) |
2 |
1
|
eqeq1i |
|- ( V = (/) <-> ( Vtx ` G ) = (/) ) |
3 |
|
usgr0v |
|- ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
4 |
2 3
|
syl3an2b |
|- ( ( G e. W /\ V = (/) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
5 |
1
|
cplgr0v |
|- ( ( G e. W /\ V = (/) ) -> G e. ComplGraph ) |
6 |
5
|
3adant3 |
|- ( ( G e. W /\ V = (/) /\ ( iEdg ` G ) = (/) ) -> G e. ComplGraph ) |
7 |
|
iscusgr |
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
8 |
4 6 7
|
sylanbrc |
|- ( ( G e. W /\ V = (/) /\ ( iEdg ` G ) = (/) ) -> G e. ComplUSGraph ) |