Step |
Hyp |
Ref |
Expression |
1 |
|
cplgr0v.v |
|- V = ( Vtx ` G ) |
2 |
1
|
cplgr1vlem |
|- ( ( # ` V ) = 1 -> G e. _V ) |
3 |
2
|
adantr |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. _V ) |
4 |
|
simpr |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
5 |
3 4
|
usgr0e |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
6 |
1
|
cplgr1v |
|- ( ( # ` V ) = 1 -> G e. ComplGraph ) |
7 |
6
|
adantr |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. ComplGraph ) |
8 |
|
iscusgr |
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
9 |
5 7 8
|
sylanbrc |
|- ( ( ( # ` V ) = 1 /\ ( iEdg ` G ) = (/) ) -> G e. ComplUSGraph ) |