Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cusgrcplgr | |- ( G e. ComplUSGraph -> G e. ComplGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr | |- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
|
2 | 1 | simprbi | |- ( G e. ComplUSGraph -> G e. ComplGraph ) |