| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cusgrrusgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
simpr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G e. ComplUSGraph ) |
| 3 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> V e. Fin ) |
| 4 |
3
|
adantr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> V e. Fin ) |
| 5 |
4
|
adantr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V e. Fin ) |
| 6 |
|
simpr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> V =/= (/) ) |
| 7 |
6
|
adantr |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V =/= (/) ) |
| 8 |
1
|
cusgrrusgr |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) |
| 9 |
2 5 7 8
|
syl3anc |
|- ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G RegUSGraph ( ( # ` V ) - 1 ) ) |
| 10 |
9
|
ex |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph -> G RegUSGraph ( ( # ` V ) - 1 ) ) ) |
| 11 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
| 12 |
1 11
|
rusgrprop0 |
|- ( G RegUSGraph ( ( # ` V ) - 1 ) -> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |
| 13 |
12
|
simp3d |
|- ( G RegUSGraph ( ( # ` V ) - 1 ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) |
| 14 |
1
|
vdiscusgr |
|- ( G e. FinUSGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) |
| 15 |
14
|
adantr |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) |
| 16 |
13 15
|
syl5 |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) ) |
| 17 |
10 16
|
impbid |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph <-> G RegUSGraph ( ( # ` V ) - 1 ) ) ) |