| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrrusgr.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G e. ComplUSGraph )  | 
						
						
							| 3 | 
							
								1
							 | 
							fusgrvtxfi | 
							 |-  ( G e. FinUSGraph -> V e. Fin )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> V e. Fin )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V e. Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> V =/= (/) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> V =/= (/) )  | 
						
						
							| 8 | 
							
								1
							 | 
							cusgrrusgr | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) )  | 
						
						
							| 9 | 
							
								2 5 7 8
							 | 
							syl3anc | 
							 |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ G e. ComplUSGraph ) -> G RegUSGraph ( ( # ` V ) - 1 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ex | 
							 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph -> G RegUSGraph ( ( # ` V ) - 1 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( VtxDeg ` G ) = ( VtxDeg ` G )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							rusgrprop0 | 
							 |-  ( G RegUSGraph ( ( # ` V ) - 1 ) -> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simp3d | 
							 |-  ( G RegUSGraph ( ( # ` V ) - 1 ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							vdiscusgr | 
							 |-  ( G e. FinUSGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							syl5 | 
							 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) -> G e. ComplUSGraph ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							impbid | 
							 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( G e. ComplUSGraph <-> G RegUSGraph ( ( # ` V ) - 1 ) ) )  |