| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrres.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							cusgrres.e | 
							 |-  E = ( Edg ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							cusgrres.f | 
							 |-  F = { e e. E | N e/ e } | 
						
						
							| 4 | 
							
								
							 | 
							cusgrres.s | 
							 |-  S = <. ( V \ { N } ) , ( _I |` F ) >. | 
						
						
							| 5 | 
							
								
							 | 
							cusgrusgr | 
							 |-  ( G e. ComplUSGraph -> G e. USGraph )  | 
						
						
							| 6 | 
							
								1 2 3 4
							 | 
							usgrres1 | 
							 |-  ( ( G e. USGraph /\ N e. V ) -> S e. USGraph )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan | 
							 |-  ( ( G e. ComplUSGraph /\ N e. V ) -> S e. USGraph )  | 
						
						
							| 8 | 
							
								
							 | 
							iscusgr | 
							 |-  ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) )  | 
						
						
							| 9 | 
							
								
							 | 
							usgrupgr | 
							 |-  ( G e. USGraph -> G e. UPGraph )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( G e. USGraph /\ G e. ComplGraph ) -> G e. UPGraph )  | 
						
						
							| 11 | 
							
								10
							 | 
							anim1i | 
							 |-  ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) -> ( G e. UPGraph /\ N e. V ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anim1i | 
							 |-  ( ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) /\ v e. ( V \ { N } ) ) -> ( ( G e. UPGraph /\ N e. V ) /\ v e. ( V \ { N } ) ) ) | 
						
						
							| 13 | 
							
								1
							 | 
							iscplgr | 
							 |-  ( G e. USGraph -> ( G e. ComplGraph <-> A. n e. V n e. ( UnivVtx ` G ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eldifi | 
							 |-  ( v e. ( V \ { N } ) -> v e. V ) | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antll | 
							 |-  ( ( G e. USGraph /\ ( N e. V /\ v e. ( V \ { N } ) ) ) -> v e. V ) | 
						
						
							| 16 | 
							
								
							 | 
							eleq1w | 
							 |-  ( n = v -> ( n e. ( UnivVtx ` G ) <-> v e. ( UnivVtx ` G ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rspcv | 
							 |-  ( v e. V -> ( A. n e. V n e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` G ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							syl | 
							 |-  ( ( G e. USGraph /\ ( N e. V /\ v e. ( V \ { N } ) ) ) -> ( A. n e. V n e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` G ) ) ) | 
						
						
							| 19 | 
							
								18
							 | 
							ex | 
							 |-  ( G e. USGraph -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> ( A. n e. V n e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` G ) ) ) ) | 
						
						
							| 20 | 
							
								19
							 | 
							com23 | 
							 |-  ( G e. USGraph -> ( A. n e. V n e. ( UnivVtx ` G ) -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) ) ) | 
						
						
							| 21 | 
							
								13 20
							 | 
							sylbid | 
							 |-  ( G e. USGraph -> ( G e. ComplGraph -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) ) ) | 
						
						
							| 22 | 
							
								21
							 | 
							imp | 
							 |-  ( ( G e. USGraph /\ G e. ComplGraph ) -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							impl | 
							 |-  ( ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) | 
						
						
							| 24 | 
							
								1 2 3 4
							 | 
							uvtxupgrres | 
							 |-  ( ( ( G e. UPGraph /\ N e. V ) /\ v e. ( V \ { N } ) ) -> ( v e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` S ) ) ) | 
						
						
							| 25 | 
							
								12 23 24
							 | 
							sylc | 
							 |-  ( ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` S ) ) | 
						
						
							| 26 | 
							
								25
							 | 
							ralrimiva | 
							 |-  ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) -> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) | 
						
						
							| 27 | 
							
								8 26
							 | 
							sylanb | 
							 |-  ( ( G e. ComplUSGraph /\ N e. V ) -> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) | 
						
						
							| 28 | 
							
								
							 | 
							opex | 
							 |-  <. ( V \ { N } ) , ( _I |` F ) >. e. _V | 
						
						
							| 29 | 
							
								4 28
							 | 
							eqeltri | 
							 |-  S e. _V  | 
						
						
							| 30 | 
							
								1 2 3 4
							 | 
							upgrres1lem2 | 
							 |-  ( Vtx ` S ) = ( V \ { N } ) | 
						
						
							| 31 | 
							
								30
							 | 
							eqcomi | 
							 |-  ( V \ { N } ) = ( Vtx ` S ) | 
						
						
							| 32 | 
							
								31
							 | 
							iscplgr | 
							 |-  ( S e. _V -> ( S e. ComplGraph <-> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) ) | 
						
						
							| 33 | 
							
								29 32
							 | 
							mp1i | 
							 |-  ( ( G e. ComplUSGraph /\ N e. V ) -> ( S e. ComplGraph <-> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) ) | 
						
						
							| 34 | 
							
								27 33
							 | 
							mpbird | 
							 |-  ( ( G e. ComplUSGraph /\ N e. V ) -> S e. ComplGraph )  | 
						
						
							| 35 | 
							
								
							 | 
							iscusgr | 
							 |-  ( S e. ComplUSGraph <-> ( S e. USGraph /\ S e. ComplGraph ) )  | 
						
						
							| 36 | 
							
								7 34 35
							 | 
							sylanbrc | 
							 |-  ( ( G e. ComplUSGraph /\ N e. V ) -> S e. ComplUSGraph )  |