| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrrusgr.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							cusgrusgr | 
							 |-  ( G e. ComplUSGraph -> G e. USGraph )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant1 | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. USGraph )  | 
						
						
							| 4 | 
							
								
							 | 
							hashnncl | 
							 |-  ( V e. Fin -> ( ( # ` V ) e. NN <-> V =/= (/) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							nn0xnn0d | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0* )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							biimtrrdi | 
							 |-  ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) - 1 ) e. NN0* ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imp | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) - 1 ) e. NN0* )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant1 | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) - 1 ) e. NN0* )  | 
						
						
							| 10 | 
							
								
							 | 
							cusgrcplgr | 
							 |-  ( G e. ComplUSGraph -> G e. ComplGraph )  | 
						
						
							| 11 | 
							
								10
							 | 
							3ad2ant1 | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. ComplGraph )  | 
						
						
							| 12 | 
							
								1
							 | 
							nbcplgr | 
							 |-  ( ( G e. ComplGraph /\ v e. V ) -> ( G NeighbVtx v ) = ( V \ { v } ) ) | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylan | 
							 |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( G NeighbVtx v ) = ( V \ { v } ) ) | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> A. v e. V ( G NeighbVtx v ) = ( V \ { v } ) ) | 
						
						
							| 15 | 
							
								3
							 | 
							anim1i | 
							 |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( G e. USGraph /\ v e. V ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							 |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( G e. USGraph /\ v e. V ) ) | 
						
						
							| 17 | 
							
								1
							 | 
							hashnbusgrvd | 
							 |-  ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							 |-  ( ( G NeighbVtx v ) = ( V \ { v } ) -> ( # ` ( G NeighbVtx v ) ) = ( # ` ( V \ { v } ) ) ) | 
						
						
							| 20 | 
							
								
							 | 
							hashdifsn | 
							 |-  ( ( V e. Fin /\ v e. V ) -> ( # ` ( V \ { v } ) ) = ( ( # ` V ) - 1 ) ) | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2antl2 | 
							 |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( # ` ( V \ { v } ) ) = ( ( # ` V ) - 1 ) ) | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( # ` ( G NeighbVtx v ) ) = ( ( # ` V ) - 1 ) ) | 
						
						
							| 23 | 
							
								18 22
							 | 
							eqtr3d | 
							 |-  ( ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) /\ ( G NeighbVtx v ) = ( V \ { v } ) ) -> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							 |-  ( ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) /\ v e. V ) -> ( ( G NeighbVtx v ) = ( V \ { v } ) -> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) | 
						
						
							| 25 | 
							
								24
							 | 
							ralimdva | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( G NeighbVtx v ) = ( V \ { v } ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) | 
						
						
							| 26 | 
							
								14 25
							 | 
							mpd | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G e. ComplUSGraph )  | 
						
						
							| 28 | 
							
								
							 | 
							ovex | 
							 |-  ( ( # ` V ) - 1 ) e. _V  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							 |-  ( VtxDeg ` G ) = ( VtxDeg ` G )  | 
						
						
							| 30 | 
							
								1 29
							 | 
							isrusgr0 | 
							 |-  ( ( G e. ComplUSGraph /\ ( ( # ` V ) - 1 ) e. _V ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) <-> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) )  | 
						
						
							| 31 | 
							
								27 28 30
							 | 
							sylancl | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> ( G RegUSGraph ( ( # ` V ) - 1 ) <-> ( G e. USGraph /\ ( ( # ` V ) - 1 ) e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) )  | 
						
						
							| 32 | 
							
								3 9 26 31
							 | 
							mpbir3and | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ V =/= (/) ) -> G RegUSGraph ( ( # ` V ) - 1 ) )  |