| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cusgrsizeindb0.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							cusgrsizeindb0.e | 
							 |-  E = ( Edg ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							cusgrsizeinds.f | 
							 |-  F = { e e. E | N e/ e } | 
						
						
							| 4 | 
							
								1
							 | 
							fvexi | 
							 |-  V e. _V  | 
						
						
							| 5 | 
							
								
							 | 
							hashnn0n0nn | 
							 |-  ( ( ( V e. _V /\ Y e. NN0 ) /\ ( ( # ` V ) = Y /\ N e. V ) ) -> Y e. NN )  | 
						
						
							| 6 | 
							
								5
							 | 
							anassrs | 
							 |-  ( ( ( ( V e. _V /\ Y e. NN0 ) /\ ( # ` V ) = Y ) /\ N e. V ) -> Y e. NN )  | 
						
						
							| 7 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> V e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> N e. V )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							 |-  ( Y = ( # ` V ) -> ( Y e. NN <-> ( # ` V ) e. NN ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcoms | 
							 |-  ( ( # ` V ) = Y -> ( Y e. NN <-> ( # ` V ) e. NN ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							biimtrdi | 
							 |-  ( ( # ` V ) = Y -> ( Y e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antlr | 
							 |-  ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imp | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( ( # ` V ) - 1 ) e. NN0 )  | 
						
						
							| 15 | 
							
								
							 | 
							nncn | 
							 |-  ( ( # ` V ) e. NN -> ( # ` V ) e. CC )  | 
						
						
							| 16 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( # ` V ) e. NN -> 1 e. CC )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							npcand | 
							 |-  ( ( # ` V ) e. NN -> ( ( ( # ` V ) - 1 ) + 1 ) = ( # ` V ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqcomd | 
							 |-  ( ( # ` V ) e. NN -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							biimtrdi | 
							 |-  ( ( # ` V ) = Y -> ( Y e. NN -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ad2antlr | 
							 |-  ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imp | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							hashdifsnp1 | 
							 |-  ( ( V e. _V /\ N e. V /\ ( ( # ` V ) - 1 ) e. NN0 ) -> ( ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							imp | 
							 |-  ( ( ( V e. _V /\ N e. V /\ ( ( # ` V ) - 1 ) e. NN0 ) /\ ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) ) | 
						
						
							| 24 | 
							
								7 8 14 21 23
							 | 
							syl31anc | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) ) | 
						
						
							| 25 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` ( V \ { N } ) ) _C 2 ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) | 
						
						
							| 26 | 
							
								25
							 | 
							eqeq2d | 
							 |-  ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) <-> ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) ) | 
						
						
							| 27 | 
							
								10
							 | 
							ad2antlr | 
							 |-  ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN <-> ( # ` V ) e. NN ) )  | 
						
						
							| 28 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( ( # ` V ) e. NN -> ( # ` V ) e. NN0 )  | 
						
						
							| 29 | 
							
								
							 | 
							hashclb | 
							 |-  ( V e. _V -> ( V e. Fin <-> ( # ` V ) e. NN0 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl5ibrcom | 
							 |-  ( ( # ` V ) e. NN -> ( V e. _V -> V e. Fin ) )  | 
						
						
							| 31 | 
							
								1 2 3
							 | 
							cusgrsizeinds | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ N e. V ) -> ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							oveq2 | 
							 |-  ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( ( ( # ` V ) - 1 ) + ( # ` F ) ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							eqeq2d | 
							 |-  ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) <-> ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							 |-  ( ( ( # ` V ) e. NN /\ ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) <-> ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							bcn2m1 | 
							 |-  ( ( # ` V ) e. NN -> ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) = ( ( # ` V ) _C 2 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							eqeq2d | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) <-> ( # ` E ) = ( ( # ` V ) _C 2 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpd | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							 |-  ( ( ( # ` V ) e. NN /\ ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							sylbid | 
							 |-  ( ( ( # ` V ) e. NN /\ ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ex | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							com3r | 
							 |-  ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) -> ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) )  | 
						
						
							| 42 | 
							
								31 41
							 | 
							syl | 
							 |-  ( ( G e. ComplUSGraph /\ V e. Fin /\ N e. V ) -> ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							3exp | 
							 |-  ( G e. ComplUSGraph -> ( V e. Fin -> ( N e. V -> ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							com14 | 
							 |-  ( ( # ` V ) e. NN -> ( V e. Fin -> ( N e. V -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								30 44
							 | 
							syldc | 
							 |-  ( V e. _V -> ( ( # ` V ) e. NN -> ( N e. V -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							com23 | 
							 |-  ( V e. _V -> ( N e. V -> ( ( # ` V ) e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantr | 
							 |-  ( ( V e. _V /\ ( # ` V ) = Y ) -> ( N e. V -> ( ( # ` V ) e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							imp | 
							 |-  ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( ( # ` V ) e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) )  | 
						
						
							| 49 | 
							
								27 48
							 | 
							sylbid | 
							 |-  ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imp | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							com13 | 
							 |-  ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( G e. ComplUSGraph -> ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) )  | 
						
						
							| 52 | 
							
								26 51
							 | 
							biimtrdi | 
							 |-  ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( G e. ComplUSGraph -> ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) | 
						
						
							| 53 | 
							
								52
							 | 
							com24 | 
							 |-  ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) | 
						
						
							| 54 | 
							
								24 53
							 | 
							mpcom | 
							 |-  ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) | 
						
						
							| 55 | 
							
								54
							 | 
							ex | 
							 |-  ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) | 
						
						
							| 56 | 
							
								55
							 | 
							adantllr | 
							 |-  ( ( ( ( V e. _V /\ Y e. NN0 ) /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) | 
						
						
							| 57 | 
							
								6 56
							 | 
							mpd | 
							 |-  ( ( ( ( V e. _V /\ Y e. NN0 ) /\ ( # ` V ) = Y ) /\ N e. V ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) | 
						
						
							| 58 | 
							
								57
							 | 
							exp41 | 
							 |-  ( V e. _V -> ( Y e. NN0 -> ( ( # ` V ) = Y -> ( N e. V -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) ) | 
						
						
							| 59 | 
							
								58
							 | 
							com25 | 
							 |-  ( V e. _V -> ( G e. ComplUSGraph -> ( ( # ` V ) = Y -> ( N e. V -> ( Y e. NN0 -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) ) | 
						
						
							| 60 | 
							
								4 59
							 | 
							ax-mp | 
							 |-  ( G e. ComplUSGraph -> ( ( # ` V ) = Y -> ( N e. V -> ( Y e. NN0 -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) | 
						
						
							| 61 | 
							
								60
							 | 
							3imp | 
							 |-  ( ( G e. ComplUSGraph /\ ( # ` V ) = Y /\ N e. V ) -> ( Y e. NN0 -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) | 
						
						
							| 62 | 
							
								61
							 | 
							com12 | 
							 |-  ( Y e. NN0 -> ( ( G e. ComplUSGraph /\ ( # ` V ) = Y /\ N e. V ) -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |