Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrsizeindb0.v |
|- V = ( Vtx ` G ) |
2 |
|
cusgrsizeindb0.e |
|- E = ( Edg ` G ) |
3 |
|
cusgrsizeinds.f |
|- F = { e e. E | N e/ e } |
4 |
1
|
fvexi |
|- V e. _V |
5 |
|
hashnn0n0nn |
|- ( ( ( V e. _V /\ Y e. NN0 ) /\ ( ( # ` V ) = Y /\ N e. V ) ) -> Y e. NN ) |
6 |
5
|
anassrs |
|- ( ( ( ( V e. _V /\ Y e. NN0 ) /\ ( # ` V ) = Y ) /\ N e. V ) -> Y e. NN ) |
7 |
|
simplll |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> V e. _V ) |
8 |
|
simplr |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> N e. V ) |
9 |
|
eleq1 |
|- ( Y = ( # ` V ) -> ( Y e. NN <-> ( # ` V ) e. NN ) ) |
10 |
9
|
eqcoms |
|- ( ( # ` V ) = Y -> ( Y e. NN <-> ( # ` V ) e. NN ) ) |
11 |
|
nnm1nn0 |
|- ( ( # ` V ) e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) |
12 |
10 11
|
syl6bi |
|- ( ( # ` V ) = Y -> ( Y e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) ) |
13 |
12
|
ad2antlr |
|- ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( ( # ` V ) - 1 ) e. NN0 ) ) |
14 |
13
|
imp |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( ( # ` V ) - 1 ) e. NN0 ) |
15 |
|
nncn |
|- ( ( # ` V ) e. NN -> ( # ` V ) e. CC ) |
16 |
|
1cnd |
|- ( ( # ` V ) e. NN -> 1 e. CC ) |
17 |
15 16
|
npcand |
|- ( ( # ` V ) e. NN -> ( ( ( # ` V ) - 1 ) + 1 ) = ( # ` V ) ) |
18 |
17
|
eqcomd |
|- ( ( # ` V ) e. NN -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) |
19 |
10 18
|
syl6bi |
|- ( ( # ` V ) = Y -> ( Y e. NN -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) ) |
21 |
20
|
imp |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) |
22 |
|
hashdifsnp1 |
|- ( ( V e. _V /\ N e. V /\ ( ( # ` V ) - 1 ) e. NN0 ) -> ( ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) ) ) |
23 |
22
|
imp |
|- ( ( ( V e. _V /\ N e. V /\ ( ( # ` V ) - 1 ) e. NN0 ) /\ ( # ` V ) = ( ( ( # ` V ) - 1 ) + 1 ) ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) ) |
24 |
7 8 14 21 23
|
syl31anc |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) ) |
25 |
|
oveq1 |
|- ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` ( V \ { N } ) ) _C 2 ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) |
26 |
25
|
eqeq2d |
|- ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) <-> ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) ) |
27 |
10
|
ad2antlr |
|- ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN <-> ( # ` V ) e. NN ) ) |
28 |
|
nnnn0 |
|- ( ( # ` V ) e. NN -> ( # ` V ) e. NN0 ) |
29 |
|
hashclb |
|- ( V e. _V -> ( V e. Fin <-> ( # ` V ) e. NN0 ) ) |
30 |
28 29
|
syl5ibrcom |
|- ( ( # ` V ) e. NN -> ( V e. _V -> V e. Fin ) ) |
31 |
1 2 3
|
cusgrsizeinds |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ N e. V ) -> ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) ) |
32 |
|
oveq2 |
|- ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( ( ( # ` V ) - 1 ) + ( # ` F ) ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) ) |
33 |
32
|
eqeq2d |
|- ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) <-> ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) ) ) |
34 |
33
|
adantl |
|- ( ( ( # ` V ) e. NN /\ ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) <-> ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) ) ) |
35 |
|
bcn2m1 |
|- ( ( # ` V ) e. NN -> ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) = ( ( # ` V ) _C 2 ) ) |
36 |
35
|
eqeq2d |
|- ( ( # ` V ) e. NN -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) <-> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) |
37 |
36
|
biimpd |
|- ( ( # ` V ) e. NN -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) |
38 |
37
|
adantr |
|- ( ( ( # ` V ) e. NN /\ ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) |
39 |
34 38
|
sylbid |
|- ( ( ( # ` V ) e. NN /\ ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) |
40 |
39
|
ex |
|- ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
41 |
40
|
com3r |
|- ( ( # ` E ) = ( ( ( # ` V ) - 1 ) + ( # ` F ) ) -> ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
42 |
31 41
|
syl |
|- ( ( G e. ComplUSGraph /\ V e. Fin /\ N e. V ) -> ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
43 |
42
|
3exp |
|- ( G e. ComplUSGraph -> ( V e. Fin -> ( N e. V -> ( ( # ` V ) e. NN -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) |
44 |
43
|
com14 |
|- ( ( # ` V ) e. NN -> ( V e. Fin -> ( N e. V -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) |
45 |
30 44
|
syldc |
|- ( V e. _V -> ( ( # ` V ) e. NN -> ( N e. V -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) |
46 |
45
|
com23 |
|- ( V e. _V -> ( N e. V -> ( ( # ` V ) e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) |
47 |
46
|
adantr |
|- ( ( V e. _V /\ ( # ` V ) = Y ) -> ( N e. V -> ( ( # ` V ) e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) |
48 |
47
|
imp |
|- ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( ( # ` V ) e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) |
49 |
27 48
|
sylbid |
|- ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) |
50 |
49
|
imp |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
51 |
50
|
com13 |
|- ( ( # ` F ) = ( ( ( # ` V ) - 1 ) _C 2 ) -> ( G e. ComplUSGraph -> ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
52 |
26 51
|
syl6bi |
|- ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( G e. ComplUSGraph -> ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) |
53 |
52
|
com24 |
|- ( ( # ` ( V \ { N } ) ) = ( ( # ` V ) - 1 ) -> ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) |
54 |
24 53
|
mpcom |
|- ( ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) /\ Y e. NN ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
55 |
54
|
ex |
|- ( ( ( V e. _V /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) |
56 |
55
|
adantllr |
|- ( ( ( ( V e. _V /\ Y e. NN0 ) /\ ( # ` V ) = Y ) /\ N e. V ) -> ( Y e. NN -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) |
57 |
6 56
|
mpd |
|- ( ( ( ( V e. _V /\ Y e. NN0 ) /\ ( # ` V ) = Y ) /\ N e. V ) -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
58 |
57
|
exp41 |
|- ( V e. _V -> ( Y e. NN0 -> ( ( # ` V ) = Y -> ( N e. V -> ( G e. ComplUSGraph -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) ) |
59 |
58
|
com25 |
|- ( V e. _V -> ( G e. ComplUSGraph -> ( ( # ` V ) = Y -> ( N e. V -> ( Y e. NN0 -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) ) |
60 |
4 59
|
ax-mp |
|- ( G e. ComplUSGraph -> ( ( # ` V ) = Y -> ( N e. V -> ( Y e. NN0 -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) ) ) |
61 |
60
|
3imp |
|- ( ( G e. ComplUSGraph /\ ( # ` V ) = Y /\ N e. V ) -> ( Y e. NN0 -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |
62 |
61
|
com12 |
|- ( Y e. NN0 -> ( ( G e. ComplUSGraph /\ ( # ` V ) = Y /\ N e. V ) -> ( ( # ` F ) = ( ( # ` ( V \ { N } ) ) _C 2 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) ) ) |