Description: Base case of the induction in cusgrsize . The size of a complete simple graph with 0 vertices, actually of every null graph, is 0=((0-1)*0)/2. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 7-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cusgrsizeindb0.v | |- V = ( Vtx ` G ) |
|
cusgrsizeindb0.e | |- E = ( Edg ` G ) |
||
Assertion | cusgrsizeindb0 | |- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrsizeindb0.v | |- V = ( Vtx ` G ) |
|
2 | cusgrsizeindb0.e | |- E = ( Edg ` G ) |
|
3 | 1 2 | uhgr0vsize0 | |- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = 0 ) |
4 | oveq1 | |- ( ( # ` V ) = 0 -> ( ( # ` V ) _C 2 ) = ( 0 _C 2 ) ) |
|
5 | 2nn | |- 2 e. NN |
|
6 | bc0k | |- ( 2 e. NN -> ( 0 _C 2 ) = 0 ) |
|
7 | 5 6 | ax-mp | |- ( 0 _C 2 ) = 0 |
8 | 4 7 | eqtr2di | |- ( ( # ` V ) = 0 -> 0 = ( ( # ` V ) _C 2 ) ) |
9 | 8 | adantl | |- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> 0 = ( ( # ` V ) _C 2 ) ) |
10 | 3 9 | eqtrd | |- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) |