Metamath Proof Explorer


Theorem cuteq0

Description: Condition for a surreal cut to equal zero. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses cuteq0.1
|- ( ph -> A <
cuteq0.2
|- ( ph -> { 0s } <
Assertion cuteq0
|- ( ph -> ( A |s B ) = 0s )

Proof

Step Hyp Ref Expression
1 cuteq0.1
 |-  ( ph -> A <
2 cuteq0.2
 |-  ( ph -> { 0s } <
3 bday0s
 |-  ( bday ` 0s ) = (/)
4 3 a1i
 |-  ( ph -> ( bday ` 0s ) = (/) )
5 0sno
 |-  0s e. No
6 sneq
 |-  ( y = 0s -> { y } = { 0s } )
7 6 breq2d
 |-  ( y = 0s -> ( A < A <
8 6 breq1d
 |-  ( y = 0s -> ( { y } < { 0s } <
9 7 8 anbi12d
 |-  ( y = 0s -> ( ( A < ( A <
10 fveqeq2
 |-  ( y = 0s -> ( ( bday ` y ) = (/) <-> ( bday ` 0s ) = (/) ) )
11 9 10 anbi12d
 |-  ( y = 0s -> ( ( ( A < ( ( A <
12 11 rspcev
 |-  ( ( 0s e. No /\ ( ( A < E. y e. No ( ( A <
13 5 12 mpan
 |-  ( ( ( A < E. y e. No ( ( A <
14 1 2 4 13 syl21anc
 |-  ( ph -> E. y e. No ( ( A <
15 bdayfn
 |-  bday Fn No
16 ssrab2
 |-  { x e. No | ( A <
17 fvelimab
 |-  ( ( bday Fn No /\ { x e. No | ( A < ( (/) e. ( bday " { x e. No | ( A < E. y e. { x e. No | ( A <
18 15 16 17 mp2an
 |-  ( (/) e. ( bday " { x e. No | ( A < E. y e. { x e. No | ( A <
19 sneq
 |-  ( x = y -> { x } = { y } )
20 19 breq2d
 |-  ( x = y -> ( A < A <
21 19 breq1d
 |-  ( x = y -> ( { x } < { y } <
22 20 21 anbi12d
 |-  ( x = y -> ( ( A < ( A <
23 22 rexrab
 |-  ( E. y e. { x e. No | ( A < E. y e. No ( ( A <
24 18 23 bitri
 |-  ( (/) e. ( bday " { x e. No | ( A < E. y e. No ( ( A <
25 14 24 sylibr
 |-  ( ph -> (/) e. ( bday " { x e. No | ( A <
26 int0el
 |-  ( (/) e. ( bday " { x e. No | ( A < |^| ( bday " { x e. No | ( A <
27 25 26 syl
 |-  ( ph -> |^| ( bday " { x e. No | ( A <
28 3 27 eqtr4id
 |-  ( ph -> ( bday ` 0s ) = |^| ( bday " { x e. No | ( A <
29 5 elexi
 |-  0s e. _V
30 29 snnz
 |-  { 0s } =/= (/)
31 sslttr
 |-  ( ( A < A <
32 30 31 mp3an3
 |-  ( ( A < A <
33 1 2 32 syl2anc
 |-  ( ph -> A <
34 eqscut
 |-  ( ( A < ( ( A |s B ) = 0s <-> ( A <
35 33 5 34 sylancl
 |-  ( ph -> ( ( A |s B ) = 0s <-> ( A <
36 1 2 28 35 mpbir3and
 |-  ( ph -> ( A |s B ) = 0s )