Step |
Hyp |
Ref |
Expression |
1 |
|
cuteq0.1 |
|- ( ph -> A < |
2 |
|
cuteq0.2 |
|- ( ph -> { 0s } < |
3 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
4 |
3
|
a1i |
|- ( ph -> ( bday ` 0s ) = (/) ) |
5 |
|
0sno |
|- 0s e. No |
6 |
|
sneq |
|- ( y = 0s -> { y } = { 0s } ) |
7 |
6
|
breq2d |
|- ( y = 0s -> ( A < A < |
8 |
6
|
breq1d |
|- ( y = 0s -> ( { y } < { 0s } < |
9 |
7 8
|
anbi12d |
|- ( y = 0s -> ( ( A < ( A < |
10 |
|
fveqeq2 |
|- ( y = 0s -> ( ( bday ` y ) = (/) <-> ( bday ` 0s ) = (/) ) ) |
11 |
9 10
|
anbi12d |
|- ( y = 0s -> ( ( ( A < ( ( A < |
12 |
11
|
rspcev |
|- ( ( 0s e. No /\ ( ( A < E. y e. No ( ( A < |
13 |
5 12
|
mpan |
|- ( ( ( A < E. y e. No ( ( A < |
14 |
1 2 4 13
|
syl21anc |
|- ( ph -> E. y e. No ( ( A < |
15 |
|
bdayfn |
|- bday Fn No |
16 |
|
ssrab2 |
|- { x e. No | ( A < |
17 |
|
fvelimab |
|- ( ( bday Fn No /\ { x e. No | ( A < ( (/) e. ( bday " { x e. No | ( A < E. y e. { x e. No | ( A < |
18 |
15 16 17
|
mp2an |
|- ( (/) e. ( bday " { x e. No | ( A < E. y e. { x e. No | ( A < |
19 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
20 |
19
|
breq2d |
|- ( x = y -> ( A < A < |
21 |
19
|
breq1d |
|- ( x = y -> ( { x } < { y } < |
22 |
20 21
|
anbi12d |
|- ( x = y -> ( ( A < ( A < |
23 |
22
|
rexrab |
|- ( E. y e. { x e. No | ( A < E. y e. No ( ( A < |
24 |
18 23
|
bitri |
|- ( (/) e. ( bday " { x e. No | ( A < E. y e. No ( ( A < |
25 |
14 24
|
sylibr |
|- ( ph -> (/) e. ( bday " { x e. No | ( A < |
26 |
|
int0el |
|- ( (/) e. ( bday " { x e. No | ( A < |^| ( bday " { x e. No | ( A < |
27 |
25 26
|
syl |
|- ( ph -> |^| ( bday " { x e. No | ( A < |
28 |
3 27
|
eqtr4id |
|- ( ph -> ( bday ` 0s ) = |^| ( bday " { x e. No | ( A < |
29 |
5
|
elexi |
|- 0s e. _V |
30 |
29
|
snnz |
|- { 0s } =/= (/) |
31 |
|
sslttr |
|- ( ( A < A < |
32 |
30 31
|
mp3an3 |
|- ( ( A < A < |
33 |
1 2 32
|
syl2anc |
|- ( ph -> A < |
34 |
|
eqscut |
|- ( ( A < ( ( A |s B ) = 0s <-> ( A < |
35 |
33 5 34
|
sylancl |
|- ( ph -> ( ( A |s B ) = 0s <-> ( A < |
36 |
1 2 28 35
|
mpbir3and |
|- ( ph -> ( A |s B ) = 0s ) |