| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cuteq1.1 |
|- ( ph -> 0s e. A ) |
| 2 |
|
cuteq1.2 |
|- ( ph -> A < |
| 3 |
|
cuteq1.3 |
|- ( ph -> { 1s } < |
| 4 |
|
bday1s |
|- ( bday ` 1s ) = 1o |
| 5 |
|
df-1o |
|- 1o = suc (/) |
| 6 |
4 5
|
eqtri |
|- ( bday ` 1s ) = suc (/) |
| 7 |
|
ssltsep |
|- ( A < A. x e. A A. y e. { 0s } x |
| 8 |
|
dfral2 |
|- ( A. y e. { 0s } x -. E. y e. { 0s } -. x |
| 9 |
8
|
ralbii |
|- ( A. x e. A A. y e. { 0s } x A. x e. A -. E. y e. { 0s } -. x |
| 10 |
|
ralnex |
|- ( A. x e. A -. E. y e. { 0s } -. x -. E. x e. A E. y e. { 0s } -. x |
| 11 |
9 10
|
bitri |
|- ( A. x e. A A. y e. { 0s } x -. E. x e. A E. y e. { 0s } -. x |
| 12 |
7 11
|
sylib |
|- ( A < -. E. x e. A E. y e. { 0s } -. x |
| 13 |
|
0sno |
|- 0s e. No |
| 14 |
|
sltirr |
|- ( 0s e. No -> -. 0s |
| 15 |
13 14
|
ax-mp |
|- -. 0s |
| 16 |
|
breq1 |
|- ( x = 0s -> ( x 0s |
| 17 |
16
|
notbid |
|- ( x = 0s -> ( -. x -. 0s |
| 18 |
17
|
rspcev |
|- ( ( 0s e. A /\ -. 0s E. x e. A -. x |
| 19 |
1 15 18
|
sylancl |
|- ( ph -> E. x e. A -. x |
| 20 |
13
|
elexi |
|- 0s e. _V |
| 21 |
|
breq2 |
|- ( y = 0s -> ( x x |
| 22 |
21
|
notbid |
|- ( y = 0s -> ( -. x -. x |
| 23 |
20 22
|
rexsn |
|- ( E. y e. { 0s } -. x -. x |
| 24 |
23
|
rexbii |
|- ( E. x e. A E. y e. { 0s } -. x E. x e. A -. x |
| 25 |
19 24
|
sylibr |
|- ( ph -> E. x e. A E. y e. { 0s } -. x |
| 26 |
12 25
|
nsyl3 |
|- ( ph -> -. A < |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. No ) -> -. A < |
| 28 |
|
sneq |
|- ( x = 0s -> { x } = { 0s } ) |
| 29 |
28
|
breq2d |
|- ( x = 0s -> ( A < A < |
| 30 |
29
|
notbid |
|- ( x = 0s -> ( -. A < -. A < |
| 31 |
27 30
|
syl5ibrcom |
|- ( ( ph /\ x e. No ) -> ( x = 0s -> -. A < |
| 32 |
31
|
necon2ad |
|- ( ( ph /\ x e. No ) -> ( A < x =/= 0s ) ) |
| 33 |
32
|
adantrd |
|- ( ( ph /\ x e. No ) -> ( ( A < x =/= 0s ) ) |
| 34 |
33
|
impr |
|- ( ( ph /\ ( x e. No /\ ( A < x =/= 0s ) |
| 35 |
|
bday0b |
|- ( x e. No -> ( ( bday ` x ) = (/) <-> x = 0s ) ) |
| 36 |
35
|
ad2antrl |
|- ( ( ph /\ ( x e. No /\ ( A < ( ( bday ` x ) = (/) <-> x = 0s ) ) |
| 37 |
36
|
necon3bid |
|- ( ( ph /\ ( x e. No /\ ( A < ( ( bday ` x ) =/= (/) <-> x =/= 0s ) ) |
| 38 |
34 37
|
mpbird |
|- ( ( ph /\ ( x e. No /\ ( A < ( bday ` x ) =/= (/) ) |
| 39 |
|
bdayelon |
|- ( bday ` x ) e. On |
| 40 |
39
|
onordi |
|- Ord ( bday ` x ) |
| 41 |
|
ord0eln0 |
|- ( Ord ( bday ` x ) -> ( (/) e. ( bday ` x ) <-> ( bday ` x ) =/= (/) ) ) |
| 42 |
40 41
|
ax-mp |
|- ( (/) e. ( bday ` x ) <-> ( bday ` x ) =/= (/) ) |
| 43 |
|
0elon |
|- (/) e. On |
| 44 |
43 39
|
onsucssi |
|- ( (/) e. ( bday ` x ) <-> suc (/) C_ ( bday ` x ) ) |
| 45 |
42 44
|
bitr3i |
|- ( ( bday ` x ) =/= (/) <-> suc (/) C_ ( bday ` x ) ) |
| 46 |
38 45
|
sylib |
|- ( ( ph /\ ( x e. No /\ ( A < suc (/) C_ ( bday ` x ) ) |
| 47 |
6 46
|
eqsstrid |
|- ( ( ph /\ ( x e. No /\ ( A < ( bday ` 1s ) C_ ( bday ` x ) ) |
| 48 |
47
|
expr |
|- ( ( ph /\ x e. No ) -> ( ( A < ( bday ` 1s ) C_ ( bday ` x ) ) ) |
| 49 |
48
|
ralrimiva |
|- ( ph -> A. x e. No ( ( A < ( bday ` 1s ) C_ ( bday ` x ) ) ) |
| 50 |
|
1sno |
|- 1s e. No |
| 51 |
50
|
elexi |
|- 1s e. _V |
| 52 |
51
|
snnz |
|- { 1s } =/= (/) |
| 53 |
|
sslttr |
|- ( ( A < A < |
| 54 |
52 53
|
mp3an3 |
|- ( ( A < A < |
| 55 |
2 3 54
|
syl2anc |
|- ( ph -> A < |
| 56 |
|
eqscut2 |
|- ( ( A < ( ( A |s B ) = 1s <-> ( A < ( bday ` 1s ) C_ ( bday ` x ) ) ) ) ) |
| 57 |
55 50 56
|
sylancl |
|- ( ph -> ( ( A |s B ) = 1s <-> ( A < ( bday ` 1s ) C_ ( bday ` x ) ) ) ) ) |
| 58 |
2 3 49 57
|
mpbir3and |
|- ( ph -> ( A |s B ) = 1s ) |