| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 2 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
| 3 |
|
cvmd |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH /\ ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ( _|_ ` A ) MH ( _|_ ` B ) ) |
| 4 |
3
|
3expia |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
| 5 |
1 2 4
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
| 6 |
|
simpr |
|- ( ( A e. CH /\ B e. CH ) -> B e. CH ) |
| 7 |
|
chjcl |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
| 8 |
|
cvcon3 |
|- ( ( B e. CH /\ ( A vH B ) e. CH ) -> ( B ( _|_ ` ( A vH B ) ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( A e. CH /\ B e. CH ) -> ( B ( _|_ ` ( A vH B ) ) |
| 10 |
|
chdmj1 |
|- ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) |
| 11 |
10
|
breq1d |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( A vH B ) ) ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 12 |
9 11
|
bitrd |
|- ( ( A e. CH /\ B e. CH ) -> ( B ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 13 |
|
dmdmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
| 14 |
5 12 13
|
3imtr4d |
|- ( ( A e. CH /\ B e. CH ) -> ( B A MH* B ) ) |
| 15 |
14
|
3impia |
|- ( ( A e. CH /\ B e. CH /\ B A MH* B ) |