Metamath Proof Explorer


Theorem cvexch

Description: The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvexch
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B )  A 

Proof

Step Hyp Ref Expression
1 ineq1
 |-  ( A = if ( A e. CH , A , ~H ) -> ( A i^i B ) = ( if ( A e. CH , A , ~H ) i^i B ) )
2 1 breq1d
 |-  ( A = if ( A e. CH , A , ~H ) -> ( ( A i^i B )  ( if ( A e. CH , A , ~H ) i^i B ) 
3 id
 |-  ( A = if ( A e. CH , A , ~H ) -> A = if ( A e. CH , A , ~H ) )
4 oveq1
 |-  ( A = if ( A e. CH , A , ~H ) -> ( A vH B ) = ( if ( A e. CH , A , ~H ) vH B ) )
5 3 4 breq12d
 |-  ( A = if ( A e. CH , A , ~H ) -> ( A  if ( A e. CH , A , ~H ) 
6 2 5 bibi12d
 |-  ( A = if ( A e. CH , A , ~H ) -> ( ( ( A i^i B )  A  ( ( if ( A e. CH , A , ~H ) i^i B )  if ( A e. CH , A , ~H ) 
7 ineq2
 |-  ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) i^i B ) = ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) )
8 id
 |-  ( B = if ( B e. CH , B , ~H ) -> B = if ( B e. CH , B , ~H ) )
9 7 8 breq12d
 |-  ( B = if ( B e. CH , B , ~H ) -> ( ( if ( A e. CH , A , ~H ) i^i B )  ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) 
10 oveq2
 |-  ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) vH B ) = ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) )
11 10 breq2d
 |-  ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H )  if ( A e. CH , A , ~H ) 
12 9 11 bibi12d
 |-  ( B = if ( B e. CH , B , ~H ) -> ( ( ( if ( A e. CH , A , ~H ) i^i B )  if ( A e. CH , A , ~H )  ( ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) )  if ( A e. CH , A , ~H ) 
13 ifchhv
 |-  if ( A e. CH , A , ~H ) e. CH
14 ifchhv
 |-  if ( B e. CH , B , ~H ) e. CH
15 13 14 cvexchi
 |-  ( ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) )  if ( A e. CH , A , ~H ) 
16 6 12 15 dedth2h
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B )  A