Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
4 |
|
cvpss |
|- ( ( ( A i^i B ) e. CH /\ B e. CH ) -> ( ( A i^i B ) ( A i^i B ) C. B ) ) |
5 |
3 2 4
|
mp2an |
|- ( ( A i^i B ) ( A i^i B ) C. B ) |
6 |
3 2
|
chpssati |
|- ( ( A i^i B ) C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ ( A i^i B ) ) ) |
7 |
5 6
|
syl |
|- ( ( A i^i B ) E. x e. HAtoms ( x C_ B /\ -. x C_ ( A i^i B ) ) ) |
8 |
|
ssin |
|- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) |
9 |
|
ancom |
|- ( ( x C_ A /\ x C_ B ) <-> ( x C_ B /\ x C_ A ) ) |
10 |
8 9
|
bitr3i |
|- ( x C_ ( A i^i B ) <-> ( x C_ B /\ x C_ A ) ) |
11 |
10
|
baibr |
|- ( x C_ B -> ( x C_ A <-> x C_ ( A i^i B ) ) ) |
12 |
11
|
notbid |
|- ( x C_ B -> ( -. x C_ A <-> -. x C_ ( A i^i B ) ) ) |
13 |
12
|
biimpar |
|- ( ( x C_ B /\ -. x C_ ( A i^i B ) ) -> -. x C_ A ) |
14 |
|
chcv1 |
|- ( ( A e. CH /\ x e. HAtoms ) -> ( -. x C_ A <-> A |
15 |
1 14
|
mpan |
|- ( x e. HAtoms -> ( -. x C_ A <-> A |
16 |
15
|
biimpa |
|- ( ( x e. HAtoms /\ -. x C_ A ) -> A |
17 |
13 16
|
sylan2 |
|- ( ( x e. HAtoms /\ ( x C_ B /\ -. x C_ ( A i^i B ) ) ) -> A |
18 |
17
|
adantrr |
|- ( ( x e. HAtoms /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) A |
19 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
20 |
|
chjass |
|- ( ( A e. CH /\ ( A i^i B ) e. CH /\ x e. CH ) -> ( ( A vH ( A i^i B ) ) vH x ) = ( A vH ( ( A i^i B ) vH x ) ) ) |
21 |
1 3 20
|
mp3an12 |
|- ( x e. CH -> ( ( A vH ( A i^i B ) ) vH x ) = ( A vH ( ( A i^i B ) vH x ) ) ) |
22 |
1 2
|
chabs1i |
|- ( A vH ( A i^i B ) ) = A |
23 |
22
|
oveq1i |
|- ( ( A vH ( A i^i B ) ) vH x ) = ( A vH x ) |
24 |
21 23
|
eqtr3di |
|- ( x e. CH -> ( A vH ( ( A i^i B ) vH x ) ) = ( A vH x ) ) |
25 |
24
|
adantr |
|- ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) ( A vH ( ( A i^i B ) vH x ) ) = ( A vH x ) ) |
26 |
|
ancom |
|- ( ( x C_ B /\ -. x C_ ( A i^i B ) ) <-> ( -. x C_ ( A i^i B ) /\ x C_ B ) ) |
27 |
|
chnle |
|- ( ( ( A i^i B ) e. CH /\ x e. CH ) -> ( -. x C_ ( A i^i B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) |
28 |
3 27
|
mpan |
|- ( x e. CH -> ( -. x C_ ( A i^i B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) |
29 |
|
inss2 |
|- ( A i^i B ) C_ B |
30 |
29
|
biantrur |
|- ( x C_ B <-> ( ( A i^i B ) C_ B /\ x C_ B ) ) |
31 |
|
chlub |
|- ( ( ( A i^i B ) e. CH /\ x e. CH /\ B e. CH ) -> ( ( ( A i^i B ) C_ B /\ x C_ B ) <-> ( ( A i^i B ) vH x ) C_ B ) ) |
32 |
3 2 31
|
mp3an13 |
|- ( x e. CH -> ( ( ( A i^i B ) C_ B /\ x C_ B ) <-> ( ( A i^i B ) vH x ) C_ B ) ) |
33 |
30 32
|
syl5bb |
|- ( x e. CH -> ( x C_ B <-> ( ( A i^i B ) vH x ) C_ B ) ) |
34 |
28 33
|
anbi12d |
|- ( x e. CH -> ( ( -. x C_ ( A i^i B ) /\ x C_ B ) <-> ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) ) ) |
35 |
26 34
|
syl5bb |
|- ( x e. CH -> ( ( x C_ B /\ -. x C_ ( A i^i B ) ) <-> ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) ) ) |
36 |
|
chjcl |
|- ( ( ( A i^i B ) e. CH /\ x e. CH ) -> ( ( A i^i B ) vH x ) e. CH ) |
37 |
3 36
|
mpan |
|- ( x e. CH -> ( ( A i^i B ) vH x ) e. CH ) |
38 |
|
cvnbtwn2 |
|- ( ( ( A i^i B ) e. CH /\ B e. CH /\ ( ( A i^i B ) vH x ) e. CH ) -> ( ( A i^i B ) ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) vH x ) = B ) ) ) |
39 |
3 2 38
|
mp3an12 |
|- ( ( ( A i^i B ) vH x ) e. CH -> ( ( A i^i B ) ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) vH x ) = B ) ) ) |
40 |
37 39
|
syl |
|- ( x e. CH -> ( ( A i^i B ) ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) vH x ) = B ) ) ) |
41 |
40
|
com23 |
|- ( x e. CH -> ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) ( ( A i^i B ) vH x ) = B ) ) ) |
42 |
35 41
|
sylbid |
|- ( x e. CH -> ( ( x C_ B /\ -. x C_ ( A i^i B ) ) -> ( ( A i^i B ) ( ( A i^i B ) vH x ) = B ) ) ) |
43 |
42
|
imp32 |
|- ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) ( ( A i^i B ) vH x ) = B ) |
44 |
43
|
oveq2d |
|- ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) ( A vH ( ( A i^i B ) vH x ) ) = ( A vH B ) ) |
45 |
25 44
|
eqtr3d |
|- ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) ( A vH x ) = ( A vH B ) ) |
46 |
19 45
|
sylan |
|- ( ( x e. HAtoms /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) ( A vH x ) = ( A vH B ) ) |
47 |
18 46
|
breqtrd |
|- ( ( x e. HAtoms /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B ) A |
48 |
47
|
exp32 |
|- ( x e. HAtoms -> ( ( x C_ B /\ -. x C_ ( A i^i B ) ) -> ( ( A i^i B ) A |
49 |
48
|
rexlimiv |
|- ( E. x e. HAtoms ( x C_ B /\ -. x C_ ( A i^i B ) ) -> ( ( A i^i B ) A |
50 |
7 49
|
mpcom |
|- ( ( A i^i B ) A |