| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpssat.1 |  |-  A e. CH | 
						
							| 2 |  | chpssat.2 |  |-  B e. CH | 
						
							| 3 | 1 2 | chincli |  |-  ( A i^i B ) e. CH | 
						
							| 4 |  | cvpss |  |-  ( ( ( A i^i B ) e. CH /\ B e. CH ) -> ( ( A i^i B )  ( A i^i B ) C. B ) ) | 
						
							| 5 | 3 2 4 | mp2an |  |-  ( ( A i^i B )  ( A i^i B ) C. B ) | 
						
							| 6 | 3 2 | chpssati |  |-  ( ( A i^i B ) C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ ( A i^i B ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( A i^i B )  E. x e. HAtoms ( x C_ B /\ -. x C_ ( A i^i B ) ) ) | 
						
							| 8 |  | ssin |  |-  ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) | 
						
							| 9 |  | ancom |  |-  ( ( x C_ A /\ x C_ B ) <-> ( x C_ B /\ x C_ A ) ) | 
						
							| 10 | 8 9 | bitr3i |  |-  ( x C_ ( A i^i B ) <-> ( x C_ B /\ x C_ A ) ) | 
						
							| 11 | 10 | baibr |  |-  ( x C_ B -> ( x C_ A <-> x C_ ( A i^i B ) ) ) | 
						
							| 12 | 11 | notbid |  |-  ( x C_ B -> ( -. x C_ A <-> -. x C_ ( A i^i B ) ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( x C_ B /\ -. x C_ ( A i^i B ) ) -> -. x C_ A ) | 
						
							| 14 |  | chcv1 |  |-  ( ( A e. CH /\ x e. HAtoms ) -> ( -. x C_ A <-> A  | 
						
							| 15 | 1 14 | mpan |  |-  ( x e. HAtoms -> ( -. x C_ A <-> A  | 
						
							| 16 | 15 | biimpa |  |-  ( ( x e. HAtoms /\ -. x C_ A ) -> A  | 
						
							| 17 | 13 16 | sylan2 |  |-  ( ( x e. HAtoms /\ ( x C_ B /\ -. x C_ ( A i^i B ) ) ) -> A  | 
						
							| 18 | 17 | adantrr |  |-  ( ( x e. HAtoms /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  A  | 
						
							| 19 |  | atelch |  |-  ( x e. HAtoms -> x e. CH ) | 
						
							| 20 |  | chjass |  |-  ( ( A e. CH /\ ( A i^i B ) e. CH /\ x e. CH ) -> ( ( A vH ( A i^i B ) ) vH x ) = ( A vH ( ( A i^i B ) vH x ) ) ) | 
						
							| 21 | 1 3 20 | mp3an12 |  |-  ( x e. CH -> ( ( A vH ( A i^i B ) ) vH x ) = ( A vH ( ( A i^i B ) vH x ) ) ) | 
						
							| 22 | 1 2 | chabs1i |  |-  ( A vH ( A i^i B ) ) = A | 
						
							| 23 | 22 | oveq1i |  |-  ( ( A vH ( A i^i B ) ) vH x ) = ( A vH x ) | 
						
							| 24 | 21 23 | eqtr3di |  |-  ( x e. CH -> ( A vH ( ( A i^i B ) vH x ) ) = ( A vH x ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  ( A vH ( ( A i^i B ) vH x ) ) = ( A vH x ) ) | 
						
							| 26 |  | ancom |  |-  ( ( x C_ B /\ -. x C_ ( A i^i B ) ) <-> ( -. x C_ ( A i^i B ) /\ x C_ B ) ) | 
						
							| 27 |  | chnle |  |-  ( ( ( A i^i B ) e. CH /\ x e. CH ) -> ( -. x C_ ( A i^i B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) | 
						
							| 28 | 3 27 | mpan |  |-  ( x e. CH -> ( -. x C_ ( A i^i B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) | 
						
							| 29 |  | inss2 |  |-  ( A i^i B ) C_ B | 
						
							| 30 | 29 | biantrur |  |-  ( x C_ B <-> ( ( A i^i B ) C_ B /\ x C_ B ) ) | 
						
							| 31 |  | chlub |  |-  ( ( ( A i^i B ) e. CH /\ x e. CH /\ B e. CH ) -> ( ( ( A i^i B ) C_ B /\ x C_ B ) <-> ( ( A i^i B ) vH x ) C_ B ) ) | 
						
							| 32 | 3 2 31 | mp3an13 |  |-  ( x e. CH -> ( ( ( A i^i B ) C_ B /\ x C_ B ) <-> ( ( A i^i B ) vH x ) C_ B ) ) | 
						
							| 33 | 30 32 | bitrid |  |-  ( x e. CH -> ( x C_ B <-> ( ( A i^i B ) vH x ) C_ B ) ) | 
						
							| 34 | 28 33 | anbi12d |  |-  ( x e. CH -> ( ( -. x C_ ( A i^i B ) /\ x C_ B ) <-> ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) ) ) | 
						
							| 35 | 26 34 | bitrid |  |-  ( x e. CH -> ( ( x C_ B /\ -. x C_ ( A i^i B ) ) <-> ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) ) ) | 
						
							| 36 |  | chjcl |  |-  ( ( ( A i^i B ) e. CH /\ x e. CH ) -> ( ( A i^i B ) vH x ) e. CH ) | 
						
							| 37 | 3 36 | mpan |  |-  ( x e. CH -> ( ( A i^i B ) vH x ) e. CH ) | 
						
							| 38 |  | cvnbtwn2 |  |-  ( ( ( A i^i B ) e. CH /\ B e. CH /\ ( ( A i^i B ) vH x ) e. CH ) -> ( ( A i^i B )  ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) vH x ) = B ) ) ) | 
						
							| 39 | 3 2 38 | mp3an12 |  |-  ( ( ( A i^i B ) vH x ) e. CH -> ( ( A i^i B )  ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) vH x ) = B ) ) ) | 
						
							| 40 | 37 39 | syl |  |-  ( x e. CH -> ( ( A i^i B )  ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B ) vH x ) = B ) ) ) | 
						
							| 41 | 40 | com23 |  |-  ( x e. CH -> ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ B ) -> ( ( A i^i B )  ( ( A i^i B ) vH x ) = B ) ) ) | 
						
							| 42 | 35 41 | sylbid |  |-  ( x e. CH -> ( ( x C_ B /\ -. x C_ ( A i^i B ) ) -> ( ( A i^i B )  ( ( A i^i B ) vH x ) = B ) ) ) | 
						
							| 43 | 42 | imp32 |  |-  ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  ( ( A i^i B ) vH x ) = B ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  ( A vH ( ( A i^i B ) vH x ) ) = ( A vH B ) ) | 
						
							| 45 | 25 44 | eqtr3d |  |-  ( ( x e. CH /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  ( A vH x ) = ( A vH B ) ) | 
						
							| 46 | 19 45 | sylan |  |-  ( ( x e. HAtoms /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  ( A vH x ) = ( A vH B ) ) | 
						
							| 47 | 18 46 | breqtrd |  |-  ( ( x e. HAtoms /\ ( ( x C_ B /\ -. x C_ ( A i^i B ) ) /\ ( A i^i B )  A  | 
						
							| 48 | 47 | exp32 |  |-  ( x e. HAtoms -> ( ( x C_ B /\ -. x C_ ( A i^i B ) ) -> ( ( A i^i B )  A  | 
						
							| 49 | 48 | rexlimiv |  |-  ( E. x e. HAtoms ( x C_ B /\ -. x C_ ( A i^i B ) ) -> ( ( A i^i B )  A  | 
						
							| 50 | 7 49 | mpcom |  |-  ( ( A i^i B )  A  |