| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgcaule.1 |
|- F/_ j F |
| 2 |
|
cvgcaule.2 |
|- F/_ k F |
| 3 |
|
cvgcaule.3 |
|- ( ph -> M e. Z ) |
| 4 |
|
cvgcaule.4 |
|- ( ph -> F e. V ) |
| 5 |
|
cvgcaule.5 |
|- Z = ( ZZ>= ` M ) |
| 6 |
|
cvgcaule.6 |
|- ( ph -> F e. dom ~~> ) |
| 7 |
|
cvgcaule.7 |
|- ( ph -> X e. RR+ ) |
| 8 |
1 2 3 4 5 6 7
|
cvgcau |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |
| 9 |
|
nfv |
|- F/ k ( X e. RR+ /\ j e. Z ) |
| 10 |
|
nfra1 |
|- F/ k A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) |
| 11 |
9 10
|
nfan |
|- F/ k ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |
| 12 |
|
rspa |
|- ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |
| 13 |
12
|
simpld |
|- ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) |
| 14 |
13
|
adantll |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) |
| 15 |
13
|
adantll |
|- ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) |
| 16 |
5
|
uzid3 |
|- ( j e. Z -> j e. ( ZZ>= ` j ) ) |
| 17 |
|
nfcv |
|- F/_ k j |
| 18 |
2 17
|
nffv |
|- F/_ k ( F ` j ) |
| 19 |
18
|
nfel1 |
|- F/ k ( F ` j ) e. CC |
| 20 |
|
nfcv |
|- F/_ k abs |
| 21 |
|
nfcv |
|- F/_ k - |
| 22 |
18 21 18
|
nfov |
|- F/_ k ( ( F ` j ) - ( F ` j ) ) |
| 23 |
20 22
|
nffv |
|- F/_ k ( abs ` ( ( F ` j ) - ( F ` j ) ) ) |
| 24 |
|
nfcv |
|- F/_ k < |
| 25 |
|
nfcv |
|- F/_ k X |
| 26 |
23 24 25
|
nfbr |
|- F/ k ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X |
| 27 |
19 26
|
nfan |
|- F/ k ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) |
| 28 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 29 |
28
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. CC <-> ( F ` j ) e. CC ) ) |
| 30 |
28
|
fvoveq1d |
|- ( k = j -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) = ( abs ` ( ( F ` j ) - ( F ` j ) ) ) ) |
| 31 |
30
|
breq1d |
|- ( k = j -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X <-> ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) |
| 32 |
29 31
|
anbi12d |
|- ( k = j -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) <-> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) ) |
| 33 |
27 32
|
rspc |
|- ( j e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) ) |
| 34 |
16 33
|
syl |
|- ( j e. Z -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) ) |
| 35 |
34
|
imp |
|- ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) -> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) |
| 36 |
35
|
simpld |
|- ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) -> ( F ` j ) e. CC ) |
| 37 |
36
|
adantr |
|- ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` j ) e. CC ) |
| 38 |
15 37
|
subcld |
|- ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) - ( F ` j ) ) e. CC ) |
| 39 |
38
|
abscld |
|- ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR ) |
| 40 |
39
|
adantlll |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR ) |
| 41 |
|
simplll |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> X e. RR+ ) |
| 42 |
41
|
rpred |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> X e. RR ) |
| 43 |
12
|
adantll |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |
| 44 |
43
|
simprd |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) |
| 45 |
40 42 44
|
ltled |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) |
| 46 |
14 45
|
jca |
|- ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) |
| 47 |
11 46
|
ralrimia |
|- ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) |
| 48 |
47
|
ex |
|- ( ( X e. RR+ /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) ) |
| 49 |
48
|
reximdva |
|- ( X e. RR+ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) ) |
| 50 |
7 8 49
|
sylc |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) |