Metamath Proof Explorer


Theorem cvgcmpub

Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014)

Ref Expression
Hypotheses cvgcmp.1
|- Z = ( ZZ>= ` M )
cvgcmp.2
|- ( ph -> N e. Z )
cvgcmp.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
cvgcmp.4
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR )
cvgcmpub.5
|- ( ph -> seq M ( + , F ) ~~> A )
cvgcmpub.6
|- ( ph -> seq M ( + , G ) ~~> B )
cvgcmpub.7
|- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ ( F ` k ) )
Assertion cvgcmpub
|- ( ph -> B <_ A )

Proof

Step Hyp Ref Expression
1 cvgcmp.1
 |-  Z = ( ZZ>= ` M )
2 cvgcmp.2
 |-  ( ph -> N e. Z )
3 cvgcmp.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
4 cvgcmp.4
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR )
5 cvgcmpub.5
 |-  ( ph -> seq M ( + , F ) ~~> A )
6 cvgcmpub.6
 |-  ( ph -> seq M ( + , G ) ~~> B )
7 cvgcmpub.7
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) <_ ( F ` k ) )
8 2 1 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` M ) )
9 eluzel2
 |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ )
10 8 9 syl
 |-  ( ph -> M e. ZZ )
11 1 10 4 serfre
 |-  ( ph -> seq M ( + , G ) : Z --> RR )
12 11 ffvelrnda
 |-  ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. RR )
13 1 10 3 serfre
 |-  ( ph -> seq M ( + , F ) : Z --> RR )
14 13 ffvelrnda
 |-  ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR )
15 simpr
 |-  ( ( ph /\ n e. Z ) -> n e. Z )
16 15 1 eleqtrdi
 |-  ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) )
17 simpl
 |-  ( ( ph /\ n e. Z ) -> ph )
18 elfzuz
 |-  ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) )
19 18 1 eleqtrrdi
 |-  ( k e. ( M ... n ) -> k e. Z )
20 17 19 4 syl2an
 |-  ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) e. RR )
21 17 19 3 syl2an
 |-  ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. RR )
22 17 19 7 syl2an
 |-  ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) <_ ( F ` k ) )
23 16 20 21 22 serle
 |-  ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) <_ ( seq M ( + , F ) ` n ) )
24 1 10 6 5 12 14 23 climle
 |-  ( ph -> B <_ A )