| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvgcmp.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
cvgcmp.2 |
|- ( ph -> N e. Z ) |
| 3 |
|
cvgcmp.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 4 |
|
cvgcmp.4 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 5 |
|
cvgcmpub.5 |
|- ( ph -> seq M ( + , F ) ~~> A ) |
| 6 |
|
cvgcmpub.6 |
|- ( ph -> seq M ( + , G ) ~~> B ) |
| 7 |
|
cvgcmpub.7 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) <_ ( F ` k ) ) |
| 8 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 9 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 10 |
8 9
|
syl |
|- ( ph -> M e. ZZ ) |
| 11 |
1 10 4
|
serfre |
|- ( ph -> seq M ( + , G ) : Z --> RR ) |
| 12 |
11
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. RR ) |
| 13 |
1 10 3
|
serfre |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 14 |
13
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR ) |
| 15 |
|
simpr |
|- ( ( ph /\ n e. Z ) -> n e. Z ) |
| 16 |
15 1
|
eleqtrdi |
|- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) ) |
| 17 |
|
simpl |
|- ( ( ph /\ n e. Z ) -> ph ) |
| 18 |
|
elfzuz |
|- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
| 19 |
18 1
|
eleqtrrdi |
|- ( k e. ( M ... n ) -> k e. Z ) |
| 20 |
17 19 4
|
syl2an |
|- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) e. RR ) |
| 21 |
17 19 3
|
syl2an |
|- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. RR ) |
| 22 |
17 19 7
|
syl2an |
|- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) <_ ( F ` k ) ) |
| 23 |
16 20 21 22
|
serle |
|- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) <_ ( seq M ( + , F ) ` n ) ) |
| 24 |
1 10 6 5 12 14 23
|
climle |
|- ( ph -> B <_ A ) |