Step |
Hyp |
Ref |
Expression |
1 |
|
cvlatcvr1.j |
|- .\/ = ( join ` K ) |
2 |
|
cvlatcvr1.c |
|- C = ( |
3 |
|
cvlatcvr1.a |
|- A = ( Atoms ` K ) |
4 |
|
simp13 |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> K e. CvLat ) |
5 |
|
cvlatl |
|- ( K e. CvLat -> K e. AtLat ) |
6 |
4 5
|
syl |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> K e. AtLat ) |
7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
8 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
9 |
7 8 3
|
atnem0 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ( meet ` K ) Q ) = ( 0. ` K ) ) ) |
10 |
6 9
|
syld3an1 |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ( meet ` K ) Q ) = ( 0. ` K ) ) ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
11 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
13 |
11 1 7 8 2 3
|
cvlcvrp |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. ( Base ` K ) /\ Q e. A ) -> ( ( P ( meet ` K ) Q ) = ( 0. ` K ) <-> P C ( P .\/ Q ) ) ) |
14 |
12 13
|
syl3an2 |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> ( ( P ( meet ` K ) Q ) = ( 0. ` K ) <-> P C ( P .\/ Q ) ) ) |
15 |
10 14
|
bitrd |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P C ( P .\/ Q ) ) ) |