| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvlatcvr1.j |  |-  .\/ = ( join ` K ) | 
						
							| 2 |  | cvlatcvr1.c |  |-  C = (  | 
						
							| 3 |  | cvlatcvr1.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simp13 |  |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> K e. CvLat ) | 
						
							| 5 |  | cvlatl |  |-  ( K e. CvLat -> K e. AtLat ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> K e. AtLat ) | 
						
							| 7 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 8 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 9 | 7 8 3 | atnem0 |  |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ( meet ` K ) Q ) = ( 0. ` K ) ) ) | 
						
							| 10 | 6 9 | syld3an1 |  |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ( meet ` K ) Q ) = ( 0. ` K ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 12 | 11 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 13 | 11 1 7 8 2 3 | cvlcvrp |  |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. ( Base ` K ) /\ Q e. A ) -> ( ( P ( meet ` K ) Q ) = ( 0. ` K ) <-> P C ( P .\/ Q ) ) ) | 
						
							| 14 | 12 13 | syl3an2 |  |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> ( ( P ( meet ` K ) Q ) = ( 0. ` K ) <-> P C ( P .\/ Q ) ) ) | 
						
							| 15 | 10 14 | bitrd |  |-  ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P C ( P .\/ Q ) ) ) |