Step |
Hyp |
Ref |
Expression |
1 |
|
cvlatexch.l |
|- .<_ = ( le ` K ) |
2 |
|
cvlatexch.j |
|- .\/ = ( join ` K ) |
3 |
|
cvlatexch.a |
|- A = ( Atoms ` K ) |
4 |
|
cvlatl |
|- ( K e. CvLat -> K e. AtLat ) |
5 |
4
|
adantr |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. AtLat ) |
6 |
|
simpr1 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. A ) |
7 |
|
simpr3 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. A ) |
8 |
1 3
|
atncmp |
|- ( ( K e. AtLat /\ P e. A /\ R e. A ) -> ( -. P .<_ R <-> P =/= R ) ) |
9 |
5 6 7 8
|
syl3anc |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( -. P .<_ R <-> P =/= R ) ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
12 |
10 1 2 3
|
cvlexchb1 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. ( Base ` K ) ) /\ -. P .<_ R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |
13 |
12
|
3expia |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. ( Base ` K ) ) ) -> ( -. P .<_ R -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) ) |
14 |
11 13
|
syl3anr3 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( -. P .<_ R -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) ) |
15 |
9 14
|
sylbird |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P =/= R -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) ) |
16 |
15
|
3impia |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |