Step |
Hyp |
Ref |
Expression |
1 |
|
cvlexch.b |
|- B = ( Base ` K ) |
2 |
|
cvlexch.l |
|- .<_ = ( le ` K ) |
3 |
|
cvlexch.j |
|- .\/ = ( join ` K ) |
4 |
|
cvlexch.a |
|- A = ( Atoms ` K ) |
5 |
1 2 3 4
|
iscvlat |
|- ( K e. CvLat <-> ( K e. AtLat /\ A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) ) |
6 |
5
|
simprbi |
|- ( K e. CvLat -> A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) ) |
7 |
|
breq1 |
|- ( p = P -> ( p .<_ x <-> P .<_ x ) ) |
8 |
7
|
notbid |
|- ( p = P -> ( -. p .<_ x <-> -. P .<_ x ) ) |
9 |
|
breq1 |
|- ( p = P -> ( p .<_ ( x .\/ q ) <-> P .<_ ( x .\/ q ) ) ) |
10 |
8 9
|
anbi12d |
|- ( p = P -> ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) <-> ( -. P .<_ x /\ P .<_ ( x .\/ q ) ) ) ) |
11 |
|
oveq2 |
|- ( p = P -> ( x .\/ p ) = ( x .\/ P ) ) |
12 |
11
|
breq2d |
|- ( p = P -> ( q .<_ ( x .\/ p ) <-> q .<_ ( x .\/ P ) ) ) |
13 |
10 12
|
imbi12d |
|- ( p = P -> ( ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) <-> ( ( -. P .<_ x /\ P .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ P ) ) ) ) |
14 |
|
oveq2 |
|- ( q = Q -> ( x .\/ q ) = ( x .\/ Q ) ) |
15 |
14
|
breq2d |
|- ( q = Q -> ( P .<_ ( x .\/ q ) <-> P .<_ ( x .\/ Q ) ) ) |
16 |
15
|
anbi2d |
|- ( q = Q -> ( ( -. P .<_ x /\ P .<_ ( x .\/ q ) ) <-> ( -. P .<_ x /\ P .<_ ( x .\/ Q ) ) ) ) |
17 |
|
breq1 |
|- ( q = Q -> ( q .<_ ( x .\/ P ) <-> Q .<_ ( x .\/ P ) ) ) |
18 |
16 17
|
imbi12d |
|- ( q = Q -> ( ( ( -. P .<_ x /\ P .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ P ) ) <-> ( ( -. P .<_ x /\ P .<_ ( x .\/ Q ) ) -> Q .<_ ( x .\/ P ) ) ) ) |
19 |
|
breq2 |
|- ( x = X -> ( P .<_ x <-> P .<_ X ) ) |
20 |
19
|
notbid |
|- ( x = X -> ( -. P .<_ x <-> -. P .<_ X ) ) |
21 |
|
oveq1 |
|- ( x = X -> ( x .\/ Q ) = ( X .\/ Q ) ) |
22 |
21
|
breq2d |
|- ( x = X -> ( P .<_ ( x .\/ Q ) <-> P .<_ ( X .\/ Q ) ) ) |
23 |
20 22
|
anbi12d |
|- ( x = X -> ( ( -. P .<_ x /\ P .<_ ( x .\/ Q ) ) <-> ( -. P .<_ X /\ P .<_ ( X .\/ Q ) ) ) ) |
24 |
|
oveq1 |
|- ( x = X -> ( x .\/ P ) = ( X .\/ P ) ) |
25 |
24
|
breq2d |
|- ( x = X -> ( Q .<_ ( x .\/ P ) <-> Q .<_ ( X .\/ P ) ) ) |
26 |
23 25
|
imbi12d |
|- ( x = X -> ( ( ( -. P .<_ x /\ P .<_ ( x .\/ Q ) ) -> Q .<_ ( x .\/ P ) ) <-> ( ( -. P .<_ X /\ P .<_ ( X .\/ Q ) ) -> Q .<_ ( X .\/ P ) ) ) ) |
27 |
13 18 26
|
rspc3v |
|- ( ( P e. A /\ Q e. A /\ X e. B ) -> ( A. p e. A A. q e. A A. x e. B ( ( -. p .<_ x /\ p .<_ ( x .\/ q ) ) -> q .<_ ( x .\/ p ) ) -> ( ( -. P .<_ X /\ P .<_ ( X .\/ Q ) ) -> Q .<_ ( X .\/ P ) ) ) ) |
28 |
6 27
|
mpan9 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( ( -. P .<_ X /\ P .<_ ( X .\/ Q ) ) -> Q .<_ ( X .\/ P ) ) ) |
29 |
28
|
exp4b |
|- ( K e. CvLat -> ( ( P e. A /\ Q e. A /\ X e. B ) -> ( -. P .<_ X -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) ) ) |
30 |
29
|
3imp |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |