Step |
Hyp |
Ref |
Expression |
1 |
|
cvlsupr2.a |
|- A = ( Atoms ` K ) |
2 |
|
cvlsupr2.l |
|- .<_ = ( le ` K ) |
3 |
|
cvlsupr2.j |
|- .\/ = ( join ` K ) |
4 |
|
df-ne |
|- ( P =/= Q <-> -. P = Q ) |
5 |
4
|
imbi1i |
|- ( ( P =/= Q -> ( P .\/ R ) = ( Q .\/ R ) ) <-> ( -. P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) ) |
6 |
|
oveq1 |
|- ( P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) |
7 |
6
|
biantrur |
|- ( ( -. P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) <-> ( ( P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) /\ ( -. P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) ) ) |
8 |
|
pm4.83 |
|- ( ( ( P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) /\ ( -. P = Q -> ( P .\/ R ) = ( Q .\/ R ) ) ) <-> ( P .\/ R ) = ( Q .\/ R ) ) |
9 |
5 7 8
|
3bitrri |
|- ( ( P .\/ R ) = ( Q .\/ R ) <-> ( P =/= Q -> ( P .\/ R ) = ( Q .\/ R ) ) ) |
10 |
1 2 3
|
cvlsupr2 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) |
11 |
10
|
3expia |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P =/= Q -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) ) |
12 |
11
|
pm5.74d |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P =/= Q -> ( P .\/ R ) = ( Q .\/ R ) ) <-> ( P =/= Q -> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) ) |
13 |
9 12
|
syl5bb |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( P =/= Q -> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) ) |