| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvlsupr2.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cvlsupr2.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cvlsupr2.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							cvlsupr2 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							biimtrdi | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) -> R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3exp | 
							 |-  ( K e. CvLat -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( P =/= Q -> ( ( P .\/ R ) = ( Q .\/ R ) -> R .<_ ( P .\/ Q ) ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imp4a | 
							 |-  ( K e. CvLat -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3imp | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R .<_ ( P .\/ Q ) )  |