| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvlsupr5.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cvlsupr5.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cvllat | 
							 |-  ( K e. CvLat -> K e. Lat )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> K e. Lat )  | 
						
						
							| 5 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P e. A )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. A )  | 
						
						
							| 10 | 
							
								6 1
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 13 | 
							
								6 12 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> P ( le ` K ) ( P .\/ R ) )  | 
						
						
							| 14 | 
							
								4 8 11 13
							 | 
							syl3anc | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P ( le ` K ) ( P .\/ R ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							breqtrd | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P ( le ` K ) ( Q .\/ R ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. A )  | 
						
						
							| 18 | 
							
								6 1
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								6 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )  | 
						
						
							| 21 | 
							
								4 19 11 20
							 | 
							syl3anc | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							breqtrd | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P ( le ` K ) ( R .\/ Q ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> K e. CvLat )  | 
						
						
							| 24 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P =/= Q )  | 
						
						
							| 25 | 
							
								12 2 1
							 | 
							cvlatexchb2 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ R e. A /\ Q e. A ) /\ P =/= Q ) -> ( P ( le ` K ) ( R .\/ Q ) <-> ( P .\/ Q ) = ( R .\/ Q ) ) )  | 
						
						
							| 26 | 
							
								23 5 9 17 24 25
							 | 
							syl131anc | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P ( le ` K ) ( R .\/ Q ) <-> ( P .\/ Q ) = ( R .\/ Q ) ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							mpbid | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( R .\/ Q ) )  |