| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvlsupr5.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cvlsupr5.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cvllat | 
							 |-  ( K e. CvLat -> K e. Lat )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> K e. Lat )  | 
						
						
							| 5 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. A )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. A )  | 
						
						
							| 10 | 
							
								6 1
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								6 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )  | 
						
						
							| 13 | 
							
								4 8 11 12
							 | 
							syl3anc | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) )  | 
						
						
							| 15 | 
							
								1 2
							 | 
							cvlsupr7 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( R .\/ Q ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3eqtr4rd | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( P .\/ R ) )  |