Step |
Hyp |
Ref |
Expression |
1 |
|
ineq1 |
|- ( A = if ( A e. CH , A , ~H ) -> ( A i^i B ) = ( if ( A e. CH , A , ~H ) i^i B ) ) |
2 |
1
|
breq1d |
|- ( A = if ( A e. CH , A , ~H ) -> ( ( A i^i B ) ( if ( A e. CH , A , ~H ) i^i B ) |
3 |
|
breq1 |
|- ( A = if ( A e. CH , A , ~H ) -> ( A MH B <-> if ( A e. CH , A , ~H ) MH B ) ) |
4 |
2 3
|
imbi12d |
|- ( A = if ( A e. CH , A , ~H ) -> ( ( ( A i^i B ) A MH B ) <-> ( ( if ( A e. CH , A , ~H ) i^i B ) if ( A e. CH , A , ~H ) MH B ) ) ) |
5 |
|
ineq2 |
|- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) i^i B ) = ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) ) |
6 |
|
id |
|- ( B = if ( B e. CH , B , ~H ) -> B = if ( B e. CH , B , ~H ) ) |
7 |
5 6
|
breq12d |
|- ( B = if ( B e. CH , B , ~H ) -> ( ( if ( A e. CH , A , ~H ) i^i B ) ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) |
8 |
|
breq2 |
|- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) MH B <-> if ( A e. CH , A , ~H ) MH if ( B e. CH , B , ~H ) ) ) |
9 |
7 8
|
imbi12d |
|- ( B = if ( B e. CH , B , ~H ) -> ( ( ( if ( A e. CH , A , ~H ) i^i B ) if ( A e. CH , A , ~H ) MH B ) <-> ( ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) if ( A e. CH , A , ~H ) MH if ( B e. CH , B , ~H ) ) ) ) |
10 |
|
ifchhv |
|- if ( A e. CH , A , ~H ) e. CH |
11 |
|
ifchhv |
|- if ( B e. CH , B , ~H ) e. CH |
12 |
10 11
|
cvmdi |
|- ( ( if ( A e. CH , A , ~H ) i^i if ( B e. CH , B , ~H ) ) if ( A e. CH , A , ~H ) MH if ( B e. CH , B , ~H ) ) |
13 |
4 9 12
|
dedth2h |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A MH B ) ) |
14 |
13
|
3impia |
|- ( ( A e. CH /\ B e. CH /\ ( A i^i B ) A MH B ) |